plzz plzz plzzz plzz slove it plzzz plzzzzzz plzz
the sides of the parallelogram are 6 cm and 14 cm and the angle between them is 30 degree. what are the lengths of its diagonal?
using trigonometry..
Answers
Answered by
1
Diagonals can be calculated by cosine law..
If diagonal opposite to 30° = d1
Then, by cosine law…
d1² = 14² + 6² - 2*14*6 * cos30°
=> d1² = 196 + 36 - 168 * √3/2
=> d1² = 232 - 168* 0.865
=> d1² = 232 - 145.68
=> d1² = √86.68
=> d1 = 9.3 ( approx) ……………..(1)
Now, angle adjacent to 30° in parallelogram = (180- 30) = 150°
So, again by cosine law..
If diagonal opposite to 150° = d2
d2² = 14² + 6² - 2*14*6 *cos 150°
=> d2² = 196 + 36 - 168* cos(90°+60°)
=> d2² = 232 - 168 *( - sin60° )
=> d2² = 232 - 168 * (-√3/2)
=> d2² = 232 - 168 * - 0.86
=> d2² = 232 + 144.48
=> d2² = 376.48
=> d2 = √376.48
=> d2 = 19.4 ( approx) ……………….(2)
So, smaller diagonal = 9.3 cm ( approx)
& greater diagonal = 19.4 cm ( approx)
If diagonal opposite to 30° = d1
Then, by cosine law…
d1² = 14² + 6² - 2*14*6 * cos30°
=> d1² = 196 + 36 - 168 * √3/2
=> d1² = 232 - 168* 0.865
=> d1² = 232 - 145.68
=> d1² = √86.68
=> d1 = 9.3 ( approx) ……………..(1)
Now, angle adjacent to 30° in parallelogram = (180- 30) = 150°
So, again by cosine law..
If diagonal opposite to 150° = d2
d2² = 14² + 6² - 2*14*6 *cos 150°
=> d2² = 196 + 36 - 168* cos(90°+60°)
=> d2² = 232 - 168 *( - sin60° )
=> d2² = 232 - 168 * (-√3/2)
=> d2² = 232 - 168 * - 0.86
=> d2² = 232 + 144.48
=> d2² = 376.48
=> d2 = √376.48
=> d2 = 19.4 ( approx) ……………….(2)
So, smaller diagonal = 9.3 cm ( approx)
& greater diagonal = 19.4 cm ( approx)
suryakm:
thanksss
Similar questions