Math, asked by venkatesh007, 11 months ago

plzz ...prove that..​

Attachments:

Answers

Answered by zahaansajid
0

lhs =  \frac{1 +  \sec(x) }{  \sec(x)  }  \\  \:  \:  \:  \:  \:  \:  \:   =  \frac{1 +  \frac{1}{ \cos(x) } }{ \frac{1}{ \cos(x) } }  =  \frac{  \frac{ \cos(x)  + 1}{ \cos(x) }  }{ \frac{1}{ \cos(x) } }   \\  \:  \:  \:  \:  \:  \:  \: =  \cos(x)  + 1

rhs =  \frac{ \sin {}^{2} (x) }{1 -  \cos(x) }  =  \frac{1 -  \cos {}^{2} (x) }{1 -  \cos(x) } \\  \:  \:  \:  \:  \:  \:  \:  \:   =  \frac{(1 +  \cos(x))(1 -  \cos(x))  }{1 -  \cos(x) }  \\ \:  \:  \:  \:  \:  \:  \:  \:   = 1 +  \cos(x)

Identities used are :

sin²x = 1-cos²x

a²-b² = (a+b)(a-b)

Therefore LHS = RHS

hence proved

Hope this is helpful to you

Pls mark as brainliest

Follow me and I'll follow back

Similar questions