Physics, asked by hemantsinghal294, 1 year ago

PLZZ SOLVE THE QUESTION BELOW OF VECTORS CLASS 11:-

Attachments:

Answers

Answered by amitkumar44481
8

AnsWer :

(D) 5i + 8j.

Solution :

Taking Vector-1.

We have Two Compounds, Let A and B.

  • Angle be 45°.
  • Compound (A) 6√2 Cos 45°.
  • Compound (B) 6√2 Sin 45°.

Compound A.

 \tt \dashrightarrow 6 \sqrt{2}  \cos45 \degree.

 \tt \dashrightarrow 6 \sqrt{2}   \times  \frac{1}{ \sqrt{2} } .

 \tt \dashrightarrow  - 6 \hat{i}

Negative sign, because this vector show opposite sides of x- axis.

Compound B.

 \tt \dashrightarrow 6 \sqrt{2}  \sin45 \degree.

 \tt \dashrightarrow 6 \sqrt{2}   \times  \frac{1}{ \sqrt{2} } .

 \tt\dashrightarrow 6  \hat{j}.

It show upward direction with y- axis.

\rule{200}1

Taking Vector-2.

We have Two Compounds, Let A and B.

  • Angle be 37°.
  • Compound (A) be 10 Cos 37°.
  • Compound (B) be 10 Sin 37°.

Compound A.

 \tt\dashrightarrow 10  \cos37 \degree.

 \tt\dashrightarrow 10 \times \frac{4}{5} .

 \tt\dashrightarrow 8 \hat{i}.

Compound B.

 \tt\dashrightarrow 10 \sin37 \degree.

 \tt\dashrightarrow 10 \times  \frac{3}{5} .

 \tt\dashrightarrow 6 \hat{j}.

\rule{200}1

Taking Vector-3.

We have, Two Compounds, Let A and B.

  • Angle be 53°.
  • Compound be (A) 5 Sin53°.
  • Compound be (B) 5 Cos53°.

Compound A.

 \tt\dashrightarrow 5 \sin53 \degree.

 \tt\dashrightarrow 5 \times  \frac{4}{5} .

 \tt\dashrightarrow  - 4 \hat{j}.

Compound B.

 \tt\dashrightarrow 5 \cos53 \degree.

 \tt\dashrightarrow 5 \times  \frac{3}{5} .

  \tt\dashrightarrow 3 \hat{i}.

\rule{200}1

Now,

Sum of all three Vector.

 \tt \dashrightarrow V_1 + V_2 + V_3 = Required \: Answer.

 \tt \dashrightarrow 6\hat{j} + 6\hat{j}   - 4\hat{j}  - 6\hat{i}  + 8\hat{i}  + 3\hat{i}

 \tt\dashrightarrow8\hat{j}  +5 \hat{i} .

Therefore, the value of three Vector be 8j + 5i.

Attachments:
Similar questions