Plzz solve these....
(iii) and (iv)
Attachments:
Answers
Answered by
5
Answer:
Given:
(III) The equation is,
1-sinA/1+sinA=(secA-tanA)²
Take LHS,
1-sinA/1+sinA
→On rationalizing,
=1-sinA/1+sinA×1-sinA/1-SinA
=(1-sinA)²/1-sin²A
=1+sin²A-2sinA/cos²A
=Sec²A+tan²A-2secA.tanA
=(secA-tanA)²
(IV)
AS we know that,
Sec²x-tan²x=1
sin²x+cos²x=1
→The given equation is,
(secA+cosA)(secA-cosA)
= Sec²A-cos²A
= 1+tan²A-(1-sin²A)
= 1+tan²A-1+sin²A
= tan²A+sin²A
Answered by
12
Given:
To Prove:
LHS = RHS
Answer:
(1):
First we will solve LHS.
LHS:
Rationalising the denominator, we get:
We can write:
LHS = RHS .
Hence Proved.
(2):
LHS:
Taking LCM , we get:
LHS = RHS
Hence Proved.
Similar questions