Math, asked by bangtangirl1, 9 months ago

Plzz solve these....
(iii) and (iv) ​

Attachments:

Answers

Answered by Mounikamaddula
5

Answer:

Given:

(III) The equation is,

1-sinA/1+sinA=(secA-tanA)²

Take LHS,

1-sinA/1+sinA

On rationalizing,

=1-sinA/1+sinA×1-sinA/1-SinA

=(1-sinA)²/1-sin²A

=1+sin²A-2sinA/cos²A

=Sec²A+tan²A-2secA.tanA

=(secA-tanA)²

(IV)

AS we know that,

Sec²x-tan²x=1

sin²x+cos²x=1

The given equation is,

(secA+cosA)(secA-cosA)

= Sec²A-cos²A

= 1+tan²A-(1-sin²A)

= 1+tan²A-1+sin²A

= tan²A+sin²A

Answered by Anonymous
12

Given:

\\\\

(1) \:  \dfrac{1 - \sin\theta}{1 + \sin\theta}  = (\sec\theta - \tan\theta)^{2}   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\ (2) \: (\sec\theta + \cos\theta)(\sec\theta \:  - \cos\theta) =  {\tan}^{2}\theta + {\sin}^{2}\theta    \\  \\  \\

To Prove:

\\\\

LHS = RHS

\\\\\\

Answer:

\\\\

(1):

\\

First we will solve LHS.

\\

LHS:

\\

Rationalising the denominator, we get:

\\

 \dfrac{1 - \sin\theta}{1 + \sin\theta}  \times  \dfrac{1 -\sin\theta}{1 - \sin\theta}   \:  \:  \:  \:  \:  \: \\ \\ (a - b)(a + b) =  {a}^{2}   -  {b}^{2} \\ \\  (a - b)^{2}  =  {a}^{2} +  {b}^{2}  -  2ab  \\   \\  \frac{(1 - \sin\theta)^{2} }{ {1}^{2}  -  {\sin}^{2} \theta}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \frac{1 +  {\sin}^{2}\theta - 2\sin\theta }{1 -  {\sin}^{2}\theta }  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ 1 -  {\sin}^{2} \theta \:  =  \:  {\cos}^{2} \theta \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\

 \dfrac{1 +  {\sin}^{2}\theta - 2\sin\theta }{ {\cos}^{2}\theta }  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \frac{1}{\cos^{2}\theta }  +  \frac{ {\sin}^{2}\theta }{ {\cos}^{2}\theta }  -  \frac{2\sin\theta}{\cos\theta \times \cos\theta}  \\  \\

We can write:

 \\  \\  \dfrac{1}{ {\cos}^{2} \theta}  =  {\sec}^{2} \theta  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\ \dfrac{ {\sin}^{2} \theta}{ {\cos}^{2}\theta }  =  {\tan}^{2} \theta  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\  {\sec}^{2} \theta +  {\tan}^{2} \theta - 2 \:  \dfrac{\sin\theta}{\cos\theta}  \times \sec\theta \\  \\  {\sec}^{2} \theta +  {\tan}^{2} \theta - 2\sec\theta\tan\theta \:  \:  \:  \:  \:  \\  \\ (\sec\theta - \tan\theta)^{2}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\

LHS = RHS .

\\

Hence Proved.

\\\\

(2):

\\

LHS:

\\

\left( \dfrac{1}{\cos\theta}  + \cos\theta\right)\left( \dfrac{1}{\cos\theta} - \cos\theta \right) \\  \\

Taking LCM , we get:

 \\  \\ \left( \dfrac{1 +  {\cos}^{2}\theta }{\cos\theta} \right)\left( \dfrac{1 -  {\cos}^{2} \theta}{\cos\theta} \right) \\  \\ 1 -  {\cos}^{2} \theta =  {\sin}^{2} \theta \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ \left( \dfrac{\left(1 +  {\cos}^{2}\theta\right) {\sin}^{2}\theta }{ {\cos}^{2} \theta} \right) \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\  \dfrac{ {\sin}^{2}\theta +  {\sin}^{2}\theta {\cos}^{2}\theta }{ {\cos}^{2}\theta  }   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\  \dfrac{ {\sin}^{2}\theta }{ {\cos\theta}^{2} }  +  \frac{ {\sin}^{2}\theta \: {\cos}^{2}\theta  }{ {\cos}^{2} \theta}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  {\tan}^{2} \theta +  {\sin}^{2} \theta  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\  \\

LHS = RHS

\\

Hence Proved.

\\\\

Similar questions