Math, asked by VijayaLaxmiMehra1, 1 year ago

plzz solve this ques


Areas related to Circles chapter

Attachments:

Answers

Answered by Anonymous
1
Now, Area of shaded region = Area of larger circle - Area of smaller circle

= (22/7)*(25^2 - 20.5^2)
= 643.5
Attachments:

VijayaLaxmiMehra1: Thanks
Anonymous: wlcm
Answered by Anonymous
2

FINDING THE RADII

Let O be the centre of the small circle .

Let AO be r.

Then , diameter AD = 2 r

Now join O and E .

OE = AO = r [ radius ]

In triangle OCE ,

OE = radius

Let the radius of the big circle be R

EC = big circle's radius - Crescent's length

    = R - 5 [ given : 5 ]

OC = big circle's radius - small circle's radius

   = R - r

Now , ∠ECO = 90°

By Pythagoras theorem :

EC² + OC² = OE²

==> ( R - 5 )² + ( R - r )² = r²

==> R² + 5² - 10 R + R² + r² - 2 Rr = r²

Cancelling r² both sides we get :

==> 2 R² + 25 - 10 R - 2 Rr = 0 .............................(1)

Note that AB - AO = 9 [ given ]

==> 2 R - 2 r =  9

==> 2 r = 2 R - 9

==> r = R - 9/2 ...............................(2)

Insert this value in (1) :

2 R² + 25 - 10 R - 2 R r = 0

==> 2 R² + 25 - 10 R - 2 R ( R - 9/2 ) = 0

==> 2 R² + 25 - 10 R - 2 R² + 9 R = 0

Cancel 2 R² :

==> 25 - 10 R + 9 R = 0

==> - R = - 25

==> R = 25

We got : r = R - 9/2

==> r = 25 - 9/2

==> r = ( 50 - 9 ) / 2

==> r = 41 / 2

==> r = 20.5

AREA OF SHADED REGION

Area of shaded region = area of the big circle - small circle

                                  ==> π R² - π r²

                                  ==> π ( R² - r² )

                                  ==> π ( 25² - ( 20.5 )² )

                                  ==> π ( 625 - 420.25 )

                                  ==> 22/7 × 204.75

                                  ==> 4504.5/7

                                  ==> 643.5

ANSWERS

The radius of small circle is 20.5 cm

The radius of big circle is 25 cm

The area of crescent is 643.5 cm²


Hope it helps you:-)

________________________________________________________________________________

Similar questions