Math, asked by jaat188, 4 months ago

plzz solved kardo.. ​

Attachments:

Answers

Answered by BrainlyEmpire
99

\mathsf{To \: Prove \: : \: \sqrt{ \dfrac{1 \: - \: cos \: A }{1 \: + \: cos \: A}}\: = \: cosec \: A \: - \: cot \: A}

\mathsf{LHS\:= \:\sqrt{\dfrac{1\:-\:cos\:A}{1\:+\:cos\:A}}}

\textsf{Rationalizing the Denominator,}

\mathsf{=\:\sqrt{\left(\dfrac{1\: -\:cos\:A}{1\:+\:cos\:A}\right)\:\times\:\left(\dfrac{1\:-\:cos\:A}{1\:-\:cos\:A}\right)}}}

\mathsf{= \: \sqrt{\dfrac{(1 \: - \: cos \: A)^{2}}{( 1^{2} \: - \: {cos}^{2}A)}}}

\mathsf{= \: \dfrac{1 \: - \: cos \: A}{\sqrt{1 \: - \: {cos}^{2}A}}}

\mathsf{=\: \dfrac{1 \: - \: cos \: A}{\sqrt{{sin}^{2}A}}}

\mathsf{= \: \dfrac{ 1 \: - \: cos \: A}{sin \: A}}\mathsf{=\: \dfrac{1}{sin \: A} \: - \: \dfrac{cos \: A}{sin \: A}}

\mathsf{\implies\:cosec\:A\: -\:cot\:A\\\fbox{=RHS}}</p><p>

\boxed{\underline{\mathsf{Proved !! }}}

____________________________________

Note:-

kindly see thi answer from website Brainly.in ߷

____________________________________

Answered by Anonymous
14

Answer:

ToProve⤵️:

1+cosA

1−cosA

=cosecA−cotA ✭

LHS=

1+cosA

1−cosA

Step-by-step explanation:

hope it helps

Similar questions