Math, asked by sunita5370, 9 months ago

Plzzz ans fast..... Complete soln plzzz​

Attachments:

Answers

Answered by manroop17
1

Answer:

your answer is

2\pi  \div 3

Answered by Cosmique
5

Given :

\sf{z=\dfrac{-4+2\sqrt3\;i}{5+\sqrt 3 \;i }}

To find :

value of arg(z) = ?

Solution :

Converting the given complex number into standard form

\implies \sf{z=\dfrac{-4+2\sqrt3\;i}{5+\sqrt 3 \;i }}

\implies \sf{z=\dfrac{-4+2\sqrt3\;i}{5+\sqrt 3 \; i}\times \dfrac{5-\sqrt3\;i}{5-\sqrt3\;i}}

\implies \sf{z=\dfrac{(-4)(5)+(-4)(-\sqrt3 \;i)+(2\sqrt3\;i)(5)+(2\sqrt3\;i)(-\sqrt3\;i)}{(5)^2 - (\sqrt3)^2\;i^2}}

\implies \sf{z=\dfrac{-20+4\sqrt3\;i+10\sqrt3\;i-6\;i^2}{25 - 3\;i^2}}

putting i² = - 1

\implies \sf{z=\dfrac{-20+14\sqrt3\;i-6(-1)}{25 - 3(-1)}}

\implies \sf{z=\dfrac{-14+14\sqrt3\;i}{28}}

\implies \sf{z=\dfrac{-1+\sqrt3\;i}{2}}

\implies \sf{z=\dfrac{-1}{2}+\dfrac{\sqrt3}{2}\;i}

Now comparing it to z = x + i y and calculating arg (z)

we will get,

\bullet\;\;\sf{x=\dfrac{-1}{2}\;\;and\;\;y=\dfrac{\sqrt3}{2}}

we can see that, x < 0 and y > 0

therefore,

point (x,y) belongs to second quadrant of complex plane.

so,

\implies\sf{arg(z)=\pi - tan\;\alpha}

(where α is the angle as shown in attachment)

\sf{since\;\:tan\;\alpha=\dfrac{y}{x}\;\;therefore,}

\implies\sf{arg(z)=\pi - tan^{-1}\left(\dfrac{y}{x}\right)}

\implies\sf{arg(z)=\pi - tan^{-1}\left(\dfrac{\frac{\sqrt3}{2}}{\frac{1}{2}}\right)}

\implies\sf{arg(z)=\pi - tan^{-1}(\sqrt3)}

\implies\sf{arg(z)=\pi - \dfrac{\pi}{3}}

\implies\boxed{\boxed{\red{\sf{arg(z)=\dfrac{2\pi}{3}}}}}

Therefore,

Argument of complex number z is \dfrac{2\pi}{3}.

Attachments:
Similar questions