Physics, asked by Anonymous, 11 months ago

plzzz answer only if u knw...
don't answer irrelevant....
& plzz with a explanation too☜​

Attachments:

Answers

Answered by Anonymous
9

❏ Question:-

@ A mass m is attached to a spring , is free to oscillate with angular frequency w in a horizontal plane without friction . The mass is pulled to a position distant \sf{X_o} from the mean position and pushed to the mean position with a velocity \sf{V_o} towards mean position. If theta be the Initial phase of its displacement , then the displacement equation is ,

(i) \sf{\ \ {\cos\theta=\dfrac{V_o}{WX_o} }}

(ii) \sf{\ \ {\sin\theta=\dfrac{V_o}{WX_o} }}

(iii) \sf{\ \ {\cos\theta=\dfrac{1}{\sqrt{1+\dfrac{(V_o)^2}{(WX_o)^2}}} }}

(iv) \sf{\ \ {\sin\theta=\dfrac{1}{\sqrt{1+\dfrac{(V_o)^2}{(WX_o)^2}}} }}

❏ Solution:-

For a Oscillating mass m the equation of displacement is given by ,

\boxed{\large{\sf{\ \ {X= A\cos(Wt+\theta)}}}}

Now at , time (t) = 0 , X=\sf{X_o}

\implies\sf{\ \ {X_o= A\cos(W(0)+\theta)}}

\implies\boxed{\sf{\ \ {X_o= A\cos\theta}}} --------------(1)

Now, differentiating With respect to t ,

\implies\sf{\ \ {\dfrac{dX}{dt}=\dfrac{d}{dt} \{A\cos(Wt+\theta)\}}}

\implies\sf{\ \ {V=-AW\sin(Wt+\theta)}}

Now at , time (t) = 0 , V=\sf{V_o}

\implies\sf{\ \ {V_o=-AW\sin(W.0+\theta)}}

\implies\sf{\ \ {V_o=-AW\sin\theta}}

\implies\boxed{\sf{\ \ {A\sin\theta=\dfrac{V_o}{W}}}} --------------(2)

Now from equation (1) & (2) ,

doing [(2)²+(1)²] , we get ,

\implies\sf{\ \ {(A\sin\theta)^2+(A\cos\theta)^2=(\dfrac{V_o}{W})^2+{X^2}_{o}}}

\implies\sf{\ \ {A^2\sin^2\theta+A^2\cos^2\theta=(\dfrac{V_o}{W})^2+{X^2}_{o}}}

\implies\sf{\ \ {A^2(\sin^2\theta+\cos^2\theta)=\dfrac{{V^2}_{o}}{W^2}+{X^2}_{o}}}

\implies\sf{\ \ {A^2(1)=\dfrac{{V^2}_{o}}{W^2}+{X^2}_{o}}}

\implies\sf{\ \ {A^2=\dfrac{{V^2}_{o}}{W^2}+{X^2}_{o}}}

\implies\boxed{\sf{\ \ {A=\sqrt{\dfrac{{V^2}_{o}}{W^2}+{X^2}_{o}}}}}

Hence from equation (1)

\implies\sf{\ \ {X_o= A\cos\theta}}

\implies\sf{\ \ {\cos\theta=\dfrac{X_o}{A}}}

\implies\sf{\ \ {\cos\theta=\dfrac{X_o}{\sqrt{\dfrac{{V^2}_{o}}{W^2}+{X^2}_{o}}}}}

\implies\sf{\ \ {\cos\theta=\dfrac{1}{\sqrt{\dfrac{\dfrac{{V^2}_{o}}{W^2}+{X^2}_{o}}{{X^2}_{o}}}}}}

\implies\sf{\ \ {\cos\theta=\dfrac{1}{\sqrt{\dfrac{{V^2}_{o}}{W^2{X^2}_{o}}+1}}}}

\implies\large{\boxed{\sf{\ \ {\cos\theta=\dfrac{1}{\sqrt{1+\dfrac{V^2_o}{W^2X_o^2}}}}}}}

Option ➩ (iii) \sf{\ \ {\cos\theta=\dfrac{1}{\sqrt{1+\dfrac{(V_o)^2}{(WX_o)^2}}} }}

Similar questions