Math, asked by prathamchhangani, 1 year ago

plzzz answer this fast its so urgent.. ans fast ill mark as brainliest

Attachments:

Answers

Answered by Anonymous
1
As per the problem,
To prove -
 \frac{sin \: x}{1 - cos \: x}  +  \frac{tan \: x}{1 + cos \: x}   = sec \: x.cosec \: x + cot \: x
Taking LHS,

After simplifying,
 \frac{sin \: x \times (1 + cos \: x)  +  tan \: x \times (1 - cos \: x)}{1  -   {cos \: }^{2} x}
 \frac{sin \: x+ sin \: x.cos \: x  +  tan \: x - sin \: x}{{sin \: }^{2} x}
As we know,
tan \: x =  \frac{sin \: x}{cos \: x}  \\   {sin}^{2}x +  {cos}^{2}x \:  = 1
 \frac{sin \: x.cos \: x  +  tan \: x}{{sin \: }^{2} x}    \\  \frac{sin \: x.cos \: x}{ {sin}^{2} x}  +  \frac{tan \: x}{ {sin}^{2} x}

 \frac{sin \: x.cos \: x}{ {sin}^{2} x}  = cot \: x \: and \:  \frac{tan \: x}{ {sin}^{2} x} =  \frac{sin \: x}{cos \: x. {sin}^{2}x }  = cosec \: x.sec \: x

As we get,

cosec \: x.sec \: x \:  + cot \: x

Hope it helped you!
Don't forget to give Brainliest Answer!

Anonymous: Note :- x is being used for theta :)
Similar questions