Math, asked by Anjalii09, 4 months ago

plzzz do this..........​

Attachments:

Answers

Answered by TheCommander
8

We have

 \implies \bf \dfrac{7 \sqrt{3} - 5 \sqrt{2}  }{ \sqrt{48} +  \sqrt{18}  }

\implies \bf \dfrac{7 \sqrt{3} - 5 \sqrt{2}  }{ \sqrt{2 \times 2 \times 2 \times 2 \times3} +  \sqrt{2 \times 3 \times 3}  }

\implies \bf \dfrac{7 \sqrt{3} - 5 \sqrt{2}  }{ \sqrt{2 ^{2} \times 2^{2} \times3} +  \sqrt{2 \times 3^{2} }  }

\implies \bf \dfrac{7 \sqrt{3} - 5 \sqrt{2}  }{ 2 \times 2\sqrt{ 3} +3  \sqrt{2 }  }

\implies \bf \dfrac{7 \sqrt{3} - 5 \sqrt{2}  }{ 4\sqrt{ 3} +3  \sqrt{2 }  }

Multiplying by 4√3-3√2 on both numerator and denominator, we get

\implies \bf \dfrac{7 \sqrt{3} - 5 \sqrt{2}  }{ 4\sqrt{ 3} +3  \sqrt{2 }  }  \times  \dfrac{4 \sqrt{3} - 3 \sqrt{2}  }{ 4\sqrt{ 3}  - 3  \sqrt{2 }  }

\implies \bf \dfrac{(7 \sqrt{3} - 5 \sqrt{2} )  \times( 4 \sqrt{3} - 3 \sqrt{2})}{ (4\sqrt{ 3} )^{2}  - (3  \sqrt{2 }) ^{2}   }

\implies \bf \dfrac{(7 \sqrt{3} - 5 \sqrt{2} )  \times( 4 \sqrt{3} - 3 \sqrt{2})}{ (48  - 18)   }

\implies \bf \dfrac{(7 \sqrt{3} - 5 \sqrt{2} )  \times( 4 \sqrt{3} - 3 \sqrt{2})}{ 30  }

\implies \bf \dfrac{(7 \sqrt{3}  \times 4 \sqrt{3} - 7 \sqrt{3} \:  \times 3 \sqrt{2} -  5 \sqrt{2} \times 4 \sqrt{3}  + 5 \sqrt{2}  \times 3 \sqrt{2})}{ 30 }

\implies \bf \dfrac{(84-21 \sqrt{6} -  20 \sqrt{6}   + 30 )}{ 30 }

 \red{\implies \bf \dfrac{114-41 \sqrt{6}  }{ 30 }  }

Similar questions