Physics, asked by Anonymous, 11 months ago

plzzz help me with explanation...​

Attachments:

Answers

Answered by Anonymous
3

❏ Formula Used :-

\setlength{\unitlength}{0.2 cm}\begin{picture}(12,4)\thicklines\put(-15,9.5){\line(1,0){33}}\qbezier(1,18)(-10,10)(1,1)\qbezier(1,18)(1,1)(1,1)\qbezier(1,18)(10,10)(1,1)\qbezier(1,18)(1,1)(1,1)\put(0.3,-1){$f_1$}\put(0.3,18.5){$L_1$}\end{picture}

let, the focus length of the covex lens  L_1 is  f_1

\setlength{\unitlength}{0.15 cm}}\begin{picture}(12,4)\thicklines\put(-20,9.5){\line(1,0){44}}\qbezier(1,18)(-10,10)(1,1)\qbezier(1,18)(1,1)(1,1)\qbezier(1,18)(10,10)(1,1)\qbezier(1,18)(1,1)(1,1)\put(0.1,-1.2){$f_2$}\put(0.1,18.5){$L_2$}\end{picture}

let, the focus length of the covex lens  L_2 is  f_2

Now, If the covex lenses  L_1 and  flL_2 , of focus lengths  f_1 and  f_2 ,are placed co-axially and if a be the distance between the optic centre of the both lenses ,

Then a combination of lens is formed ,

if the focus length of this combination is F ,

Then ,

\sf\boxed{\large{\frac{1}{F}=\frac{1}{f_1}+\frac{1}{f_2}-\frac{a}{f_1f_2}}}

Now,

if a=0 (i.e, the lenses are placed adjacently)

\sf\boxed{\large\red{{\frac{1}{F}=\frac{1}{f_1}+\frac{1}{f_2}}}}

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\thicklines\put(1,1){\line(1,0){6.5}}\put(1,1.1){\line(1,0){6.5}}\put(1,1.2){\line(1,0){6.5}}\end{picture}

❏ Solution:-

✏ Given:-

  •  f_1 = 30 cm.
  •  f_1 = 30 cm.

✏ To Find:-

  • Focal length of the combination, = F

✏ Explanation :-

\sf\frac{1}{F}=\frac{1}{f_1}+\frac{1}{f_2}

\sf\frac{1}{F}=\frac{1}{30}+\frac{1}{30}

\sf\frac{1}{F}=\frac{1+1}{30}

\sf\frac{1}{F}=\frac{\cancel2}{\cancel30}

\sf\frac{1}{F}=\frac{1}{15}

\sf\boxed{\large\red{{F=15 \:cm}}}

∴ Focus length of the combination is = 15 cm.

Similar questions