Math, asked by mrvalien, 5 months ago

plzzz kindly help me in the problem​

Attachments:

Answers

Answered by BrainlyEmpire
3

Given :-

  • Mass of the body = 20 kg
  • Initial velocity of the body = 5 m/s
  • Final velocity of the body = 2 m/s

To Find :-

  • The work done by the force

Solution :-

  • Applying work enegy theorem ,

 \\   : \implies \sf \:W =   \Delta KE  \\  \\

 \\   : \implies{\sf{\star \: {\boxed{\purple{\sf{W  =  \dfrac{1}{2}m {v}^{2}  -  \dfrac{1}{2} m {u}^{2}  }}}}}} \\  \\

Where ,

  • W is work done
  • m is mass
  • u is initial velocity
  • v is final velocity

We have ,

  • m = 20 kg
  • v = 2 m/s
  • u = 5 m/s

Substituting the values :-

  \\   : \implies \sf \: W  =  \dfrac{1}{2}(20) {(2)}^{2}  -  \dfrac{1}{2} (20) {(5)}^{2} \\  \\

 \\   : \implies \sf \: W  =  \dfrac{1}{2} (20)(4) -  \dfrac{1}{2} (20)(25) \\  \\

 \\   : \implies \sf \: W  =  \dfrac{1}{2} (80) -  \dfrac{1}{2} (500) \\  \\

 \\ :   \implies \sf \: W  = 40 - 250 \\  \\

 \\   :\implies{\underline{\boxed{\mathfrak{\pink{ W =   - 210 \: J }}}}} \:  \bigstar \\  \\

Answered by Anonymous
31

Answer:

  \\   : \implies \sf \: W  =  \dfrac{1}{2}(20) {(2)}^{2}  -  \dfrac{1}{2} (20) {(5)}^{2} \\  \\

 \\   : \implies \sf \: W  =  \dfrac{1}{2} (20)(4) -  \dfrac{1}{2} (20)(25) \\  \\

 \\   : \implies \sf \: W  =  \dfrac{1}{2} (80) -  \dfrac{1}{2} (500) \\  \\

 \\ :   \implies \sf \: W  = 40 - 250 \\  \\

 \\   :\implies{\underline{\boxed{\mathfrak{\blue{ W =   - 210 \: J }}}}} \:  \bigstar \\  \\

Similar questions