Math, asked by bao34, 4 months ago

plzzz solve it.... ​

Attachments:

Answers

Answered by BrainlyEmpire
174

\large{\underbrace{\sf{\red{Answer:}}}}

\huge{\boxed{\sf{\orange{ 43 \dfrac{3}{4} \% \:or\: 43.75 \%}}}}

\large{\underbrace{\sf{\purple{Explanation:}}}}

Let the radius of the sphere be \displaystyle{\sf{ \dfrac{ \pi}{2}cm.}}

Then its diameter = \implies{\sf{ \big( \dfrac{ \pi}{2} \big) cm.}}

Curved surface area off the original sphere

⠀⠀:\implies{\sf{ 4 \pi \dfrac{r}{2}^{2} = \pi r^{2}cm^{2}}}

New diameter(decreased) of the sphere

⠀:\implies{\sf{ r-r \times \dfrac{25}{100}}}

⠀⠀:\implies{\sf{ r- \dfrac{r}{4}= \dfrac{3r}{4}}}

{ \therefore} Radius of the new sphere

:\implies{\sf{ \dfrac{1}{2} \big( \dfrac{3r}{4} \big) = \frac{3r}{8}cm }}

{ \therefore} New curved surface area of the sphere

:\implies{\sf{ 4\pi \big( \frac{3r}{8}cm \big) = \dfrac{9\pi r^{2}}{16}cm^{2}}}

{ \therefore} Decrease in the original curved surface area

:\implies{\sf{ \pi r^{2} - \dfrac{9 \pi r^{2}}{16}}}

:\implies{\sf{ \pi r^{2} - \dfrac{7 \pi r^{2}}{16}}}

{ \therefore} Percentage of decrease in the original curved surface area

:\implies{\sf{ \dfrac{\dfrac{7 \pi r^{2}}{16}}{ \pi r^{2}} \times 100 \%}}

\large{:}\implies{\boxed{\sf{\pink{ 43 \dfrac{3}{4} \%\:or\:43.75 \%}}}}

Hence, the original curved surface area decreases by 43.75%.

Answered by Anonymous
0

\large{\underbrace{\sf{\red{Answer:}}}}

\huge{\boxed{\sf{\orange{ 43 \dfrac{3}{4} \% \:or\: 43.75 \%}}}}

\large{\underbrace{\sf{\purple{Explanation:}}}}

Let the radius of the sphere be \displaystyle{\sf{ \dfrac{ \pi}{2}cm.}}

Then its diameter = \implies{\sf{ \big( \dfrac{ \pi}{2} \big) cm.}}

Curved surface area off the original sphere

⠀⠀:\implies{\sf{ 4 \pi \dfrac{r}{2}^{2} = \pi r^{2}cm^{2}}}

New diameter(decreased) of the sphere

⠀:\implies{\sf{ r-r \times \dfrac{25}{100}}}

⠀⠀:\implies{\sf{ r- \dfrac{r}{4}= \dfrac{3r}{4}}}

{ \therefore} Radius of the new sphere

:\implies{\sf{ \dfrac{1}{2} \big( \dfrac{3r}{4} \big) = \frac{3r}{8}cm }}

{ \therefore} New curved surface area of the sphere

:\implies{\sf{ 4\pi \big( \frac{3r}{8}cm \big) = \dfrac{9\pi r^{2}}{16}cm^{2}}}

{ \therefore} Decrease in the original curved surface area

:\implies{\sf{ \pi r^{2} - \dfrac{9 \pi r^{2}}{16}}}

:\implies{\sf{ \pi r^{2} - \dfrac{7 \pi r^{2}}{16}}}

{ \therefore} Percentage of decrease in the original curved surface area

:\implies{\sf{ \dfrac{\dfrac{7 \pi r^{2}}{16}}{ \pi r^{2}} \times 100 \%}}

\large{:}\implies{\boxed{\sf{\pink{ 43 \dfrac{3}{4} \%\:or\:43.75 \%}}}}

Hence, the original curved surface area decreases by 43.75%.

Similar questions