Math, asked by wali961, 5 months ago

plzzz solve it. .... ​

Attachments:

Answers

Answered by BrainlyEmpire
118

Answer:-.

\displaystyle\frac{\frac{\left(\left(2n\right)!\right)}{\left(5!\left(2n-3\right)!\right)}}{\frac{\left(n!\right)}{\left(4!\left(n-2\right)!\right)}}=\frac{52}{5}\quad :\quad n=7

Step-by-step explanation:

\displaystyle\frac{\frac{\left(\left(2n\right)!\right)}{\left(5!\left(2n-3\right)!\right)}}{\frac{\left(n!\right)}{\left(4!\left(n-2\right)!\right)}}=\frac{52}{5}

\displaystyle\black{\mathrm{Simplify\:}\frac{\frac{\left(2n\right)!}{5!\left(2n-3\right)!}}{\frac{n!}{4!\left(n-2\right)!}}:}

\displaystyle\frac{\frac{\left(2n\right)!}{5!\left(2n-3\right)!}}{\frac{n!}{4!\left(n-2\right)!}}

\displaystyle\gray{\frac{\frac{\left(2n\right)!}{5!\left(2n-3\right)!}}{\frac{n!}{4!\left(n-2\right)!}}}

\displaystyle=\frac{\left(2n\right)!\cdot \:4!\left(n-2\right)!}{5!\left(2n-3\right)!n!}

\displaystyle\gray{\mathrm{Cancel\:the\:factorials}:\quad \frac{n!}{\left(n+m\right)!}=\frac{1}{\left(n+1\right)\cdot \left(n+2\right)\cdots \left(n+m\right)}}

\gray{\displaystyle\frac{4!}{5!}=\frac{1}{5}}

\displaystyle=\frac{\left(2n\right)!\left(n-2\right)!}{5n!\left(2n-3\right)!}

\displaystyle\gray{\mathrm{Cancel\:the\:factorials}:\quad \frac{n!}{\left(n-m\right)!}=n\cdot \left(n-1\right)\cdots \left(n-m+1\right),\:n>m}

\displaystyle\gray{\frac{\left(2n\right)!}{\left(2n-3\right)!}=2n\left(2n-1\right)\left(2n-2\right)}

\displaystyle=\frac{2n\left(n-2\right)!\left(2n-1\right)\left(2n-2\right)}{5n!}

\displaystyle\gray{\mathrm{Cancel\:the\:factorials}:\quad \frac{n!}{\left(n+m\right)!}=\frac{1}{\left(n+1\right)\cdot \left(n+2\right)\cdots \left(n+m\right)}}

\gray{\displaystyle\frac{\left(n-2\right)!}{n!}=\frac{1}{n\left(n-1\right)}}

\displaystyle=\frac{2n\left(2n-1\right)\left(2n-2\right)}{5n\left(n-1\right)}

\gray{\mathrm{Factor}\:2n\left(2n-1\right)\left(2n-2\right):\quad 4n\left(2n-1\right)\left(n-1\right)}

\gray{\displaystyle=\frac{4n\left(2n-1\right)\left(n-1\right)}{5n\left(n-1\right)}}

\displaystyle\gray{\mathrm{Cancel\:}\frac{4n\left(2n-1\right)\left(n-1\right)}{5n\left(n-1\right)}:\quad \frac{4\left(2n-1\right)}{5}}

\displaystyle=\frac{4\left(2n-1\right)}{5}

\displaystyle\frac{4\left(2n-1\right)}{5}=\frac{52}{5}

\gray{\mathrm{Multiply\:both\:sides\:by\:}5}

\displaystyle\frac{4\left(2n-1\right)}{5}\cdot \:5=\frac{52}{5}\cdot \:5

\gray{\mathrm{Simplify}}

4\left(2n-1\right)=52

\gray{\mathrm{Divide\:both\:sides\:by\:}4}

\displaystyle\frac{4\left(2n-1\right)}{4}=\frac{52}{4}

\gray{\mathrm{Simplify}}

2n-1=13

\gray{\mathrm{Add\:}1\mathrm{\:to\:both\:sides}}

2n-1+1=13+1

\gray{\mathrm{Simplify}}

2n=14

\gray{\mathrm{Divide\:both\:sides\:by\:}2}

\displaystyle\frac{2n}{2}=\frac{14}{2}

\gray{\mathrm{Simplifu}}

n=7

Answered by Anonymous
36

Answer:

Answer:-.

\displaystyle\frac{\frac{\left(\left(2n\right)!\right)}{\left(5!\left(2n-3\right)!\right)}}{\frac{\left(n!\right)}{\left(4!\left(n-2\right)!\right)}}=\frac{52}{5}\quad :\quad n=7

Step-by-step explanation:

\displaystyle\frac{\frac{\left(\left(2n\right)!\right)}{\left(5!\left(2n-3\right)!\right)}}{\frac{\left(n!\right)}{\left(4!\left(n-2\right)!\right)}}=\frac{52}{5}

\displaystyle\black{\mathrm{Simplify\:}\frac{\frac{\left(2n\right)!}{5!\left(2n-3\right)!}}{\frac{n!}{4!\left(n-2\right)!}}:}

\displaystyle\frac{\frac{\left(2n\right)!}{5!\left(2n-3\right)!}}{\frac{n!}{4!\left(n-2\right)!}}

\displaystyle\gray{\frac{\frac{\left(2n\right)!}{5!\left(2n-3\right)!}}{\frac{n!}{4!\left(n-2\right)!}}}

\displaystyle=\frac{\left(2n\right)!\cdot \:4!\left(n-2\right)!}{5!\left(2n-3\right)!n!}

\displaystyle\gray{\mathrm{Cancel\:the\:factorials}:\quad \frac{n!}{\left(n+m\right)!}=\frac{1}{\left(n+1\right)\cdot \left(n+2\right)\cdots \left(n+m\right)}}

\gray{\displaystyle\frac{4!}{5!}=\frac{1}{5}}

\displaystyle=\frac{\left(2n\right)!\left(n-2\right)!}{5n!\left(2n-3\right)!}

\displaystyle\gray{\mathrm{Cancel\:the\:factorials}:\quad \frac{n!}{\left(n-m\right)!}=n\cdot \left(n-1\right)\cdots \left(n-m+1\right),\:n>m}

\displaystyle\gray{\frac{\left(2n\right)!}{\left(2n-3\right)!}=2n\left(2n-1\right)\left(2n-2\right)}

\displaystyle=\frac{2n\left(n-2\right)!\left(2n-1\right)\left(2n-2\right)}{5n!}

\displaystyle\gray{\mathrm{Cancel\:the\:factorials}:\quad \frac{n!}{\left(n+m\right)!}=\frac{1}{\left(n+1\right)\cdot \left(n+2\right)\cdots \left(n+m\right)}}

\gray{\displaystyle\frac{\left(n-2\right)!}{n!}=\frac{1}{n\left(n-1\right)}}

\displaystyle=\frac{2n\left(2n-1\right)\left(2n-2\right)}{5n\left(n-1\right)}

\gray{\mathrm{Factor}\:2n\left(2n-1\right)\left(2n-2\right):\quad 4n\left(2n-1\right)\left(n-1\right)}

\gray{\displaystyle=\frac{4n\left(2n-1\right)\left(n-1\right)}{5n\left(n-1\right)}}

\displaystyle\gray{\mathrm{Cancel\:}\frac{4n\left(2n-1\right)\left(n-1\right)}{5n\left(n-1\right)}:\quad \frac{4\left(2n-1\right)}{5}}

\displaystyle=\frac{4\left(2n-1\right)}{5}

\displaystyle\frac{4\left(2n-1\right)}{5}=\frac{52}{5}

\gray{\mathrm{Multiply\:both\:sides\:by\:}5}

\displaystyle\frac{4\left(2n-1\right)}{5}\cdot \:5=\frac{52}{5}\cdot \:5

\gray{\mathrm{Simplify}}

4\left(2n-1\right)=52

\gray{\mathrm{Divide\:both\:sides\:by\:}4}

\displaystyle\frac{4\left(2n-1\right)}{4}=\frac{52}{4}

\gray{\mathrm{Simplify}}

2n-1=13

\gray{\mathrm{Add\:}1\mathrm{\:to\:both\:sides}}

2n-1+1=13+1

\gray{\mathrm{Simplify}}

2n=14

\gray{\mathrm{Divide\:both\:sides\:by\:}2}

\displaystyle\frac{2n}{2}=\frac{14}{2}

\gray{\mathrm{Simplify}}

n=7

Similar questions