Math, asked by looser85, 9 months ago

plzzz solve this question............​

Attachments:

Answers

Answered by rajsingh24
32

CONSTRUCTION :-

Draw, OD perpendicular AB, OE perpendicular BC, and OF perpendicular AC. join OA , OB and OC.

SOLUTION :-

 \leadsto \tt Area \: of \: equilateral \: Δ \:  =  \:  \frac{ \sqrt{3} }{4}(side) { }^{2} \\  \\  \leadsto \tt  \: Area \: of \: Δabc \:  =  \: ar(Δaob) + ar(Δboc) + ar(Δaoc) \\  \\ \leadsto \tt   \:  \frac{ \sqrt{3} }{4} (12) {}^{2}  =  \frac{ab \times r}{2}  +  \frac{bc \times r}{2}  +  \frac{ac \times r}{2}  \\ \tiny \:   \tt \red [ \: ar. \: of \: equilateral \: Δ \:  =  \frac{ \sqrt{3} }{4} a {}^{2} \red ] \\  \\  \leadsto \tt \:  \frac{ \sqrt{3} }{4}  (144) \:  =  \frac{r}{2} (ab + bc + ac) \\  \\ \leadsto \tt \:   \frac{ \sqrt{3} }{ \cancel4}  ( \cancel{144)} \:  =  \frac{r}{2} (ab + bc + ac) \:  \\  \\ \leadsto \tt \:  \: 2 \times 36    \sqrt{3}  = r(12 + 12 + 12) \\  \tiny \:  \red[  \tt\: as \: we \: know \: that , \: equilateral \: Δ \:  all \: sides \: are \: equal \red ] \\  \\ \leadsto \tt  \: 72 \sqrt{3}  = 36r \\  \\ \leadsto \tt  \: r \:  =   (\frac{72}{36} ) \sqrt{3}  \\  \\  \leadsto \tt  \:  \:  r \:  = 2 \times 1.73 \:  \:  \:  \:  \:  \: \:  \:  (.°.  \sqrt{3} = 1.73)  \\  \\   \leadsto \tt \: { \boxed{ \tt \: r \:  =  \: 3.46cm}} \\  \\ \leadsto \tt  \: Area \: of \: \: the \: shaded \: region \:  =  \: ar. \: of \: Δabc \:  -   \: ar.\: of \: circle \:  \\  \\ \leadsto \tt  \:  \frac{ \sqrt{3} }{4} (12) {}^{2}  - 3.14 \times (2 \sqrt{3} ) {}^{2}  \:  \:  \:  \:  \:  \: [ \: ar. \: of \: circle \:  =  \: \pi \: r {}^{2} ] \:  \\  \\ \leadsto \tt   \:   \frac{(1.73)}{4}  \times  \: 144 - 3.14 \times (12) \\  \\ \leadsto \tt   \: 62.28 - 37.68 \\  \\ \leadsto \tt   \: { \boxed{ \tt \: 24.6cm {}^{2} }} \\  \\ \leadsto \tt   \: { \boxed{ \boxed{ \red{ \underline{ \tt{the \:  \: area \: \:  of \: \:  the \: shaded \:  \: region \: \:  is \: \:  24.6cm {}^{2}. }}}}}}

Attachments:
Answered by RvChaudharY50
59

Given :-

  • Side of Equaliteral ∆ = 12 cm.

Formula used :-

  • inradius of Equilateral ∆ = (side/2√3).
  • Area of circle = πr².
  • Area of Equaliteral ∆ = (√3/4)(side)²

Solution :-

→ inradius of Circle = (12/2√3) = (6/√3) = (6/1.73) = 3.46,cm.

So,

Area of circle = πr² = (3.14) * (3.46)²

→ Area = 37.59cm²

Hence, Area of incircle will be 37.59cm². (Approx).

____________________

now,

Area of Equaliteral ∆ = (√3/4) * 12 * 12

→ Area = 1.73 * 3 * 12

→ Area = 62.28cm².

so,

Shaded Area = Area of Eq.∆ - Area of in-circle.

Shaded Area = 62.28 - 37.59 = 24.59cm² (Approx).

Hence , Area of shaded Region is 24.59cm² .(Approx).

_____________________

Similar questions