Math, asked by popatdev2712, 4 months ago

plzzzz ans it fast.........​

Attachments:

Answers

Answered by anindyaadhikari13
3

Required Answer:-

Given to evaluate:

 \rm \mapsto \dfrac{ {2}^{2001}  +  {2}^{1999} }{ {2}^{2000} -  {2}^{1998} }

Solution:

Given that,

 \rm \dfrac{ {2}^{2001}  +  {2}^{1999} }{ {2}^{2000} -  {2}^{1998} }

 \rm  = \dfrac{ {2}^{1999}({2}^{2}  + 1)}{ {2}^{1998}( {2}^{2}  - 1) }

 \rm  = \dfrac{ {2}^{1999 - 1998}({2}^{2}  + 1)}{( {2}^{2}  - 1) }

 \rm  = \dfrac{2 \times 5}{3}

 \rm =  \dfrac{10}{3}

 \rm = 3 \dfrac{1}{3}

Hence,

 \rm  \implies \dfrac{ {2}^{2001}  +  {2}^{1999} }{ {2}^{2000} -  {2}^{1998} }  = 3 \dfrac{1}{3}

Answer:

 \rm  \implies \dfrac{ {2}^{2001}  +  {2}^{1999} }{ {2}^{2000} -  {2}^{1998} }  = 3 \dfrac{1}{3}

Answered by Anisha5119
5

Answer:

Heya theanswer Mark as brainliest pleaseeeeee follow up

Attachments:
Similar questions