Math, asked by sunkaripallavika0308, 6 months ago

plzzzz answer this. ​

Attachments:

Answers

Answered by gautamkumargupta692
1

Answer:

ABCD is a rhombus with O as point of intersection of diagonals.

In ΔAOB,

∠AOB=90

0

(since diagonals are perpendicular in rhombus).

By Pythagoras theorem,

AB

2

=AO

2

+OB

2

Similarly,

BC

2

=OC

2

+OB

2

,DC

2

=OD

2

+OC

2

DA

2

=DO

2

+OA

2

AB

2

+BC

2

+CD

2

+DA

2

=2(OA

2

+OB

2

+OC

2

+OD

2

=4(AO

2

+DO

2

)

Rhombus diagonal biset each other,

AO=OC,DO=OB

AC=AO+OC

AC

2

=OA

2

+OC

2

+2AO.OC=4AO

2

Similarly,

DB

2

=4OD

2

∴AC

2

+DB

2

=4(AO

2

+DO

2

)

AB

2

+BC

2

+CD

2

+DA

2

=AC

2

+DB

2

Hence Proved.

Answered by Anonymous
1

A rhombus ABCD whose diagonals AC and BD intersect at O.

To Prove :- ( AB² + BC² + CD² + DA² ) = ( AC² + BD² ).

Proof :-

➡ We know that the diagonals of a rhombus bisect each other at right angles.

==>∠AOB = ∠BOC = ∠COD = ∠DOA = 90°,

From right ∆AOB , we have

AB² = OA² + OB² [ by Pythagoras' theorem ]

==> 4AB² = ( AC² + BD² ) .

==> AB² + AB² + AB² + AB² = ( AC² + BD² ) .

•°• AB² + BC² + CD² + DA² = ( AC² + BD² ) .

[ In a rhombus , all sides are equal ] .

Hence, it is proved.

Similar questions