Math, asked by ink8, 4 months ago

plzzzz help me..... ​

Attachments:

Answers

Answered by digitalboy2131
0

Answer:

Hope it will help you

Please mark it brainliest answer and follow me

Attachments:
Answered by BrainlyEmpire
3

ANSWER:-

Given that:-

First Phase:-

  • Conical vessel of radius 9 cm
  • Height of the conical vessel is 20 cm

Second Phase:-

  • The water is poured into a cylinder, lidless
  • Base is 6 cm and height is 10 cm.
  • Volume of water now left in cone? What we need to do now? Suspicious!

\setlength{\unitlength}{1.2mm}\begin{picture}(5,5)\thicklines\put(0,0){\qbezier(1,0)(12,3)(24,0)\qbezier(1,0)(-2,-1)(1,-2)\qbezier(24,0)(27,-1)(24,-2)\qbezier(1,-2)(12,-5)(24,-2)}\put(-0.5,-1){\line(1,2){13}}\put(25.5,-1){\line(-1,2){13}}\multiput(12.5,-1)(2,0){7}{\line(1,0){1}}\multiput(12.5,-1)(0,4){7}{\line(0,1){2}}\put(18,1.6){\sf{9 \ cm}}\put(9.5,10){\sf{20 \ cm}}\end{picture}  Transferred >> \setlength{\unitlength}{1mm}\begin{picture}(5,5)\thicklines\multiput(-0.5,-1)(26,0){2}{\line(0,1){40}}\multiput(12.5,-1)(0,3.2){13}{\line(0,1){1.6}}\multiput(12.5,-1)(0,40){2}{\multiput(0,0)(2,0){7}{\line(1,0){1}}}\multiput(0,0)(0,40){2}{\qbezier(1,0)(12,3)(24,0)\qbezier(1,0)(-2,-1)(1,-2)\qbezier(24,0)(27,-1)(24,-2)\qbezier(1,-2)(12,-5)(24,-2)}\multiput(18,2)(0,32){2}{\sf{6 \ cm}}\put(9,17.5){\sf{10 \ cm}}\end{picture}

\boxed{\sf{Volume \ of \ water - Volume \ of \ Cylinder = Required \ Answer}}

Confusion gone! Let's Do!

\boxed{\rm{Volume \ of \ Cone = \dfrac{1}{3} \pi \times r^2 \times h}}

  • Where r is 9 cm
  • Where h is 20 cm

\boxed{\bf{Volume \ of \ Cylinder = \pi \times r^2 \times h}}

  • Where r is 6 cm
  • Where h is 10 cm

\rm{Volume \ of \ Cone = \dfrac{1}{3} \times 3.14 \times (9)^2 \times 20}

\rm{Volume \ of \ Cone = \dfrac{1}{3} \times 3.14 \times 81 \times 20}

\boxed{\boxed{\rm{Volume \ of \ Cone = 1695.6 \ cm^3 }}}

Next phase:-

\bf{Volume \ of \ Cylinder= 3.14 \times (6)^2 \times 10}

\bf{Volume \ of \ Cylinder = 3.14 \times 36 \times 10}

\boxed{\boxed{\bf{Volume \ of \ Cylinder = 1130.4 \ cm^3}}}

Now, let us subtract the values to get the answer.

\boxed{\sf{Volume \ of \ water - Volume \ of \ Cylinder = Required \ Answer}} [Remember?]

\implies 1695.6-1130.4

\boxed{\sf{\longrightarrow 565.2 \ cm^3 is \ the \ required \ answer.}} | \longleftarrow Amount of water left.

• Figure attached if not visible.

Attachments:
Similar questions