Math, asked by rahul3690, 5 months ago

Plzzzz help me..... ​

Attachments:

Answers

Answered by BrainlyEmpire
40

{\mathfrak{\underline{\purple{\:\:\: Given:-\:\:\:}}}} \\ \\

\:\:\:\:\bullet\:\:\:\sf{Distance \:b/w\: planet\:\&\: Earth = 2.5 \times10^{7}}

\:\:\:\:\bullet\:\:\:\sf{Gravitational \:force = 3.82 \times 10^{18}}

\:\:\:\:\bullet\:\:\:\sf{Mass \:of\: both \: planets = 5.98 \times 10^{24}}

\\

{\mathfrak{\underline{\red{\:\:\:To \:Find:-\:\:\:}}}} \\ \\

\:\:\:\:\bullet\:\:\:\sf{Universal\: Gravitation\: Constant}

\\

{\mathfrak{\underline{\pink{\:\:\: Formula\:Applied:-\:\:\:}}}} \\ \\

\:\:\:\:\bullet\:\:\:\sf{F = \dfrac{Gm_1m_2}{r^2}}

\\

{\mathfrak{\underline{\orange{\:\:\: Calculation:-\:\:\:}}}} \\ \\

☯ Using Newton's Law Of Gravitation:-

\\

\dashrightarrow\:\: \sf{F = \dfrac{Gm_1m_2}{r^2}}

\\

\dashrightarrow\:\: \sf{3.82\times 1{0}^{18}=\dfrac{G\times (5.98\times 1{0}^{24})^2}{(2.5\times 10^9)^2}}

\\

\dashrightarrow\:\: \sf{3.82\times 10^{18}=\dfrac{G\times </p><p>35.76\times 10^{48}}{6.25\times 10^{18}}}

\\

\dashrightarrow\:\: \sf{ G=\dfrac{3.82\times 10^{18}\times 6.25\times 10^{18}}{35.76\times 10^{48}}}

\\

\dashrightarrow\:\:{\boxed{\sf{\red{G=6.67\times 10^{-11} N{m}^{2} k{g}^{-2}}}}} \\

Answered by Anonymous
36

Answer:

{\mathfrak{\underline{\pink{\:\:\: Given:-\:\:\:}}}} \\ \\

\:\:\:\:\bullet\:\:\:\sf{Distance \:b/w\: planet\:\&amp;\: Earth = 2.5 \times10^{7}}

\:\:\:\:\bullet\:\:\:\sf{Gravitational \:force = 3.82 \times 10^{18}}

\:\:\:\:\bullet\:\:\:\sf{Mass \:of\: both \: planets = 5.98 \times 10^{24}}

\\

{\mathfrak{\underline{\orange{\:\:\:To \:Find:-\:\:\:}}}} \\ \\

\:\:\:\:\bullet\:\:\:\sf{Universal\: Gravitation\: Constant}

\\

{\mathfrak{\underline{\blue{\:\:\: Formula\:Applied:-\:\:\:}}}} \\ \\

\:\:\:\:\bullet\:\:\:\sf{F = \dfrac{Gm_1m_2}{r^2}}

\\

{\mathfrak{\underline{\orange{\:\:\: Calculation:-\:\:\:}}}} \\ \\

☯ Using Newton's Law Of Gravitation:-

\\

\dashrightarrow\:\: \sf{F = \dfrac{Gm_1m_2}{r^2}}

\\

\dashrightarrow\:\: \sf{3.82\times 1{0}^{18}=\dfrac{G\times (5.98\times 1{0}^{24})^2}{(2.5\times 10^9)^2}}

\\

\dashrightarrow\:\: \sf{3.82\times 10^{18}=\dfrac{G\times </p><p>35.76\times 10^{48}}{6.25\times 10^{18}}}

\\

\dashrightarrow\:\: \sf{ G=\dfrac{3.82\times 10^{18}\times 6.25\times 10^{18}}{35.76\times 10^{48}}}

\\

\dashrightarrow\:\:{\boxed{\sf{\blue{G=6.67\times 10^{-11} N{m}^{2} k{g}^{-2}}}}} \\

Similar questions