Math, asked by rahul2562, 3 months ago

Plzzzz help me....... ​

Attachments:

Answers

Answered by BrainlyEmpire
51

Given :-

An equation,  \bf  \dfrac{sin {30}^{ \circ}  + tan {45}^{ \circ}  - cosec {60}^{ \circ} }{sec {30}^{ \circ} + cos {60}^{ \circ}  + cot {45}^{ \circ}}

What to do ?

To evaluate the given equation,  \bf \dfrac{sin {30}^{ \circ}  + tan {45}^{ \circ}  - cosec {60}^{ \circ} }{sec {30}^{ \circ} + cos {60}^{ \circ}  + cot {45}^{ \circ}}

Solution :-

Given equation,

 \bf \implies\dfrac{sin {30}^{ \circ}  + tan {45}^{ \circ}  - cosec {60}^{ \circ} }{sec {30}^{ \circ} + cos {60}^{ \circ}  + cot {45}^{ \circ}  }

We know that,

 \bf \bullet \:  \:  \: sin {30}^{ \circ}  =  \dfrac{1}{2}  \\  \\   \bf \bullet \:  \:  \: tan {45}^{ \circ}  = 1 \\  \\  \bf \bullet \:  \:  \: cosec {60}^{ \circ}  =  \dfrac{2}{ \sqrt{3} }  \\  \\  \bf \bullet \:  \:  \: sec {30}^{ \circ} =  \dfrac{2}{ \sqrt{3} }   \\  \\  \bf \bullet \:  \:  \: cos {60}^{ \circ}  =  \dfrac{1}{2}  \\  \\  \bf \bullet \:  \:  \: cot {45}^{ \circ}  = 1

  • Substitute all the values in the given equation.

\bf \implies  \dfrac{  \bigg(\dfrac{1}{2}  \bigg)+( 1) -   \bigg(\dfrac{2}{ \sqrt{3} } \bigg)}{ \bigg( \dfrac{2}{ \sqrt{3} } \bigg) +  \bigg( \dfrac{1}{2} \bigg) + 1}  \\  \\  \\ \bf \implies  \dfrac{ \dfrac{1}{2} + 1 -  \dfrac{2}{ \sqrt{3} }  }{ \dfrac{2}{ \sqrt{3} }+  \dfrac{1}{2} + 1 }  \\  \\  \\ \bf \implies  \dfrac{ \dfrac{1 + 2}{2} -  \dfrac{2}{ \sqrt{3}}}{ \dfrac{2}{ \sqrt{3}} +  \dfrac{1 + 2}{2} }

\bf \implies  \dfrac{ \dfrac{3}{2} -  \dfrac{2}{ \sqrt{3}}}{ \dfrac{2}{ \sqrt{3}} +  \dfrac{3}{2} }  \\  \\  \\ \bf \implies  \dfrac{ \bigg( \dfrac{3 \sqrt{3}  - 4}{2 \sqrt{3} }  \bigg)}{ \bigg( \dfrac{4 + 3 \sqrt{3}}{2 \sqrt{3} }  \bigg)} \\  \\  \\  \bf \implies \dfrac{(3 \sqrt{3}- 4)}{(4 + 3 \sqrt{3})} \times  \dfrac{ \not2\sqrt{3} }{ \not2\sqrt{3}}

\bf \implies  \dfrac{(3 \sqrt{3} - 4)}{(4 + 3 \sqrt{3})}  \\  \\  \\ \bf \implies  \dfrac{(3 \sqrt{3} - 4)}{(3 \sqrt{3} + 4)}  \times  \dfrac{(3 \sqrt{3} - 4)}{(3 \sqrt{3} - 4)}  \\  \\  \\ \bf \implies  \dfrac{ {(3 \sqrt{3} - 4)}^{2} }{(3 \sqrt{3} + 4)(3 \sqrt{3} - 4)}

  • Using two identities in the numerator and the denominator,

(a - b)² = a² - 2ab + b²

(a + b)(a - b) = a² - b²

\bf \implies  \dfrac{ {(3 \sqrt{3})}^{2} - 2(3 \sqrt{3})(4) +  {(4)}^{2}}{ {(3 \sqrt{3})}^{2} -  {(4)}^{2} }  \\  \\  \\ \bf \implies  \dfrac{9 \times 3 - 24 \sqrt{3} + 16}{9 \times 3 - 16}  \\  \\  \\ \bf \implies  \dfrac{27 - 24 \sqrt{3} + 16}{27 - 16}  \\  \\  \\ \bf \implies  \dfrac{27 + 16 - 24 \sqrt{3}}{11}  \\  \\  \\ \bf \implies  \dfrac{43 - 24 \sqrt{3} }{11}

Hence,

 \bf \dfrac{sin {30}^{ \circ}  + tan {45}^{ \circ}  - cosec {60}^{ \circ} }{sec {30}^{ \circ} + cos {60}^{ \circ}  + cot {45}^{ \circ}} = \dfrac{43 - 24 \sqrt{3} }{11}

Answered by Anonymous
38

Answer:

Solution :-

\bf \implies  \dfrac{  \bigg(\dfrac{1}{2}  \bigg)+( 1) -   \bigg(\dfrac{2}{ \sqrt{3} } \bigg)}{ \bigg( \dfrac{2}{ \sqrt{3} } \bigg) +  \bigg( \dfrac{1}{2} \bigg) + 1}  \\  \\  \\ \bf \implies  \dfrac{ \dfrac{1}{2} + 1 -  \dfrac{2}{ \sqrt{3} }  }{ \dfrac{2}{ \sqrt{3} }+  \dfrac{1}{2} + 1 }  \\  \\  \\ \bf \implies  \dfrac{ \dfrac{1 + 2}{2} -  \dfrac{2}{ \sqrt{3}}}{ \dfrac{2}{ \sqrt{3}} +  \dfrac{1 + 2}{2} }

\bf \implies  \dfrac{ \dfrac{3}{2} -  \dfrac{2}{ \sqrt{3}}}{ \dfrac{2}{ \sqrt{3}} +  \dfrac{3}{2} }  \\  \\  \\ \bf \implies  \dfrac{ \bigg( \dfrac{3 \sqrt{3}  - 4}{2 \sqrt{3} }  \bigg)}{ \bigg( \dfrac{4 + 3 \sqrt{3}}{2 \sqrt{3} }  \bigg)} \\  \\  \\  \bf \implies \dfrac{(3 \sqrt{3}- 4)}{(4 + 3 \sqrt{3})} \times  \dfrac{ \not2\sqrt{3} }{ \not2\sqrt{3}}

\bf \implies  \dfrac{(3 \sqrt{3} - 4)}{(4 + 3 \sqrt{3})}  \\  \\  \\ \bf \implies  \dfrac{(3 \sqrt{3} - 4)}{(3 \sqrt{3} + 4)}  \times  \dfrac{(3 \sqrt{3} - 4)}{(3 \sqrt{3} - 4)}  \\  \\  \\ \bf \implies  \dfrac{ {(3 \sqrt{3} - 4)}^{2} }{(3 \sqrt{3} + 4)(3 \sqrt{3} - 4)}

Using two identities in the numerator and the denominator,

(a - b)² = a² - 2ab + b²

(a + b)(a - b) = a² - b²

\bf \implies  \dfrac{ {(3 \sqrt{3})}^{2} - 2(3 \sqrt{3})(4) +  {(4)}^{2}}{ {(3 \sqrt{3})}^{2} -  {(4)}^{2} }  \\  \\  \\ \bf \implies  \dfrac{9 \times 3 - 24 \sqrt{3} + 16}{9 \times 3 - 16}  \\  \\  \\ \bf \implies  \dfrac{27 - 24 \sqrt{3} + 16}{27 - 16}  \\  \\  \\ \bf \implies  \dfrac{27 + 16 - 24 \sqrt{3}}{11}  \\  \\  \\ \bf \implies  \dfrac{43 - 24 \sqrt{3} }{11}

Hence,

 \bf \dfrac{sin {30}^{ \circ}  + tan {45}^{ \circ}  - cosec {60}^{ \circ} }{sec {30}^{ \circ} + cos {60}^{ \circ}  + cot {45}^{ \circ}} = \dfrac{43 - 24 \sqrt{3} }{11}

Similar questions