Math, asked by yuzi57, 4 months ago

plzzzz solve it..... ​

Attachments:

Answers

Answered by BrainlyEmpire
100

Answer:-

(a) 10 and 0

Step-by-step explanation:

\displaystyle\sum _{k=4}^{143}\frac{1}{\sqrt{k}+\sqrt{k+1}}=a-\sqrt{b}

\mathrm{Let\:us\:consider\:the\:L.H.S;}

\displaystyle\mathrm{Multiply\:by\:the\:conjugate}\:\frac{\sqrt{k}-\sqrt{k+1}}{\sqrt{k}-\sqrt{k+1}}

= \displaystyle \sum^{143}_{k=4} \frac{1\cdot \left(\sqrt{k}-\sqrt{k+1}\right)}{\left(\sqrt{k}+\sqrt{k+1}\right)\left(\sqrt{k}-\sqrt{k+1}\right)}

= \displaystyle \sum^{143}_{k=4} \frac{\sqrt{k}-\sqrt{k+1}}{k-\left(k+1\right)}

= \displaystyle \sum^{143}_{k=4} \frac{\cancel{-}\left(\sqrt{k+1}-\sqrt{k}\right)}{\cancel{-}\left(\left(k+1\right)-k\right)}

\gray{\mathrm{Simplify}}

= \displaystyle \sum^{143}_{k=4} \frac{\sqrt{k+1}-\sqrt{k}}{1}

a_k=\sqrt{k+1}-\sqrt{k}

\mathrm{Compute\:a_4}:\quad \sqrt{5}-\sqrt{4}

\mathrm{Compute\:}a_5:\quad a_5=\sqrt{6}-\sqrt{5}

\mathrm{Compute\:}a_6:\quad a_6=\sqrt{7}-\sqrt{6}

\dots

\mathrm{Compute\:}a_{143}:\quad a_{143}=\sqrt{144}-\sqrt{143}

\mathrm{Expand\:the\:Sum}

\left(\sqrt{5}-\sqrt{4}\right)+\left(\sqrt{6}-\sqrt{5}\right)+\left(\sqrt{7}-\sqrt{6}\right)+\hdots+\left(\sqrt{144}-\sqrt{143}\right)

\implies \sqrt{5}-\sqrt{4}+\sqrt{6}-\sqrt{5}+\sqrt{7}-\sqrt{6}+\hdots+\sqrt{144}-\sqrt{143}

\implies -\sqrt{4}+\sqrt{144}

\mathrm{Simplify}

\implies -2+12 = \bold{10}

\mathrm{Compairing\:the\:L.H.S.\:with\:R.H.S};

10 = a -\sqrt{b}

\implies 10 - \sqrt{0} = a - \sqrt{b}

a=10,b=0

\mathrm{Option\:\left(a\right)~10~and~0}

Answered by BabeHeart
182

Answer:

Answer:-

(a) 10 and 0

Step-by-step explanation:

\displaystyle\sum _{k=4}^{143}\frac{1}{\sqrt{k}+\sqrt{k+1}}=a-\sqrt{b}

\mathrm{Let\:us\:consider\:the\:L.H.S;}

\displaystyle\mathrm{Multiply\:by\:the\:conjugate}\:\frac{\sqrt{k}-\sqrt{k+1}}{\sqrt{k}-\sqrt{k+1}}

= \displaystyle \sum^{143}_{k=4} \frac{1\cdot \left(\sqrt{k}-\sqrt{k+1}\right)}{\left(\sqrt{k}+\sqrt{k+1}\right)\left(\sqrt{k}-\sqrt{k+1}\right)}

= \displaystyle \sum^{143}_{k=4} \frac{\sqrt{k}-\sqrt{k+1}}{k-\left(k+1\right)}

= \displaystyle \sum^{143}_{k=4} \frac{\cancel{-}\left(\sqrt{k+1}-\sqrt{k}\right)}{\cancel{-}\left(\left(k+1\right)-k\right)}

\blue{\mathrm{Simplify}}

= \displaystyle \sum^{143}_{k=4} \frac{\sqrt{k+1}-\sqrt{k}}{1}

a_k=\sqrt{k+1}-\sqrt{k}

\mathrm{Compute\:a_4}:\quad \sqrt{5}-\sqrt{4}

\mathrm{Compute\:}a_5:\quad a_5=\sqrt{6}-\sqrt{5}

\mathrm{Compute\:}a_6:\quad a_6=\sqrt{7}-\sqrt{6}

\dots

\mathrm{Compute\:}a_{143}:\quad a_{143}=\sqrt{144}-\sqrt{143}

\mathrm{Expand\:the\:Sum}

\left(\sqrt{5}-\sqrt{4}\right)+\left(\sqrt{6}-\sqrt{5}\right)+\left(\sqrt{7}-\sqrt{6}\right)+\left(\sqrt{144}-\sqrt{143}\right)

\implies \sqrt{5}-\sqrt{4}+\sqrt{6}-\sqrt{5}+\sqrt{7}-\sqrt{6}+\sqrt{144}-\sqrt{143}

\implies -\sqrt{4}+\sqrt{144}

\mathrm{Simplify}

\implies -2+12 = \bold{10}

\mathrm{Compairing\:the\:L.H.S.\:with\:R.H.S};

10 = a -\sqrt{b}

\implies 10 - \sqrt{0} = a - \sqrt{b}

a=10,b=0

\mathrm{Option\:\left(a\right)~10~and~0}

Similar questions