Math, asked by jattandaswag, 1 year ago

plzzzz solve urgent

Attachments:

Answers

Answered by Pari0210
3
Given (a + b + c) = 12
Squaring on both the sides, we get
(a + b + c)2 = 12²
⇒ a2 + b2 + c2  + 2(ab + bc + ca) = 144
⇒ 90 + 2(ab + bc + ca) = 144
⇒ 2(ab + bc + ca) = 144 – 90 = 54
⇒ ab + bc + ca = 27 →  (1)
Recall that a3+b3+c3-3abc = (a + b + c)( a2 + b2 + c2 – ab – bc – ca)
                                       = 12(90– 27)
                                       = 12(63) = 756

Pari0210: sorry.... in the last 2nd step it will be 12(63) that is equal to 756
Pari0210: sorry for the mistake
Anonymous: You can edit it , sis
Pari0210: yeb bro, did ... thnx
Pari0210: yes*
Anonymous: Ur wlcm sis !
Pari0210: :-)
Pari0210: thanks for marking me as brainliest , bro
Answered by Anonymous
1
Given,

⇒ ( a + b + c ) = 12 ------- ( 1 )

⇒ ( a² + b² + c² ) = 90 ------- ( 2 )

We have to find the value of ( a³ + b³ + c³ - 3abc ).

Using identity,

⇒ a³ + b³ + c³ - 3abc = ( a + b + c ) ( a² + b² + c² - ab - bc - ca )

Here,we can find that we have the values of ( a + b + c ) and ( a² + b² + c² ) but to find the value of ( a³ + b³ + c³ - 3abc ), we need one more value i.e. ( -ab - bc - ca ).

We can find this value by using eq.( 1 ) and eq.( 2 ).

Let's do it !

We have,

⇒ ( a + b + c ) = 12 as equation ( 1 ).

Squaring both sides,

⇒ ( a + b + c )² = 12²

Using identity,

⇒ ( a + b + c )² = a² + b² +c² + 2ab + 2bc + 2ca

⇒a² + b² + c² + 2ab + 2bc + 2ca = 144

Substitute the value of ( 2 ),

⇒90 + 2ab + 2bc + 2ca = 144

⇒ 2ab + 2bc + 2ca = 144 - 90

Taking out 2 as common in L.H.S,

⇒ 2( ab + bc + ca ) = 54

⇒ ( ab + bc + ca ) = 54 ÷ 2

⇒ ( ab + bc + ca ) = 27

Changing their sides,

⇒ -27 = -ab - bc - ca -------- ( 3 )

Now, we have the values of all necessary terms to find our final solution.

= a³ + b³ + c³ - 3abc

= ( a + b + c ) ( a² + b² + c² - ab - bc - ca )

Substitute the value of ( 1 ) , ( 2 ) and ( 3 ),

= ( 12 ) ( 90 - 27 )

= 12 × 63

= 756

The required answer is 756.

Anonymous: :-)
Similar questions