Plzzzzzz answer this question I WILL MARK AS BRAINLIEST
Attachments:
Answers
Answered by
2
Step-by-step explanation:
I hope you know that sin²θ+cos²θ=1
LHS=2(sin⁶θ+cos⁶θ)-3(sin⁴θ+cos⁴θ)+1
=2[(sin²θ)³+(cos²θ)³] - 3[(sin²θ)²+(cos²θ)²] + 1
=2(sin²θ+cos²θ)(sin⁴θ+cos⁴θ-sin²θcos²θ) - 3[(sin²θ+cos²θ)²-2sin²θcos²θ] + 1
=2[(sin²θ+cos²θ)²-3sin²θcos²θ] - 3(1-2sin²θcos²θ) + 1
=2(1-3sin²θcos²θ) - 3(1-2sin²θcos²θ) + 1
=2 - 6sin²θcos²θ - 3 + 6sin²θcos²θ + 1
=0=RHS
HENCE PROVED
Similar questions