Math, asked by alai11, 4 months ago

plzzzzzz.... help...... ​

Attachments:

Answers

Answered by BrainlyEmpire
138

Given :-

Initial velocity = 60 m/s

Angle of inclination = 30°

To Find :-

Maximum height reached and range of projectile.

Solution :-

❒ A body is said to be projectile if it is projected into space with some initial velocity and then it continues to move in a vertical plane such that its horizontal acceleration is zero and vertical downward acceleration is equal to g.

A] Maximum Height :

\sf:\implies\:H=\dfrac{u^2sin^2\theta}{2g}

\sf:\implies\:H=\dfrac{(60)^2\times sin^230^{\circ}}{2(10)}

\sf:\implies\:H=\dfrac{3600\times (1/2)^2}{20}

\sf:\implies\:H=180\times \dfrac{1}{4}

:\implies\:\underline{\boxed{\bf{\purple{H=45\:m}}}}

B] Horizontal Range :

\sf:\implies\:R=\dfrac{u^2sin2\theta}{g}

\sf:\implies\:R=\dfrac{(60)^2sin2(30)^{\circ}}{10}

\sf:\implies\:R=360\times sin60^{\circ}

\sf:\implies\:R=360\times\dfrac{\sqrt3}{2}

\sf:\implies\:R=180\times\sqrt3

:\implies\:\underline{\boxed{\bf{\gray{R=311.4\:m}}}}

____________________________________________________________________________________________________

Answered by Anonymous
105

Answer:

Solution :-

A body is said to be projectile if it is projected into space with some initial velocity and then it continues to move in a vertical plane such that its horizontal acceleration is zero and vertical downward acceleration is equal to g.

A] Maximum Height :

\sf:\implies\:H=\dfrac{u^2sin^2\theta}{2g}

\sf:\implies\:H=\dfrac{(60)^2\times sin^230^{\circ}}{2(10)}

\sf:\implies\:H=\dfrac{3600\times (1/2)^2}{20}

\sf:\implies\:H=180\times \dfrac{1}{4}

:\implies\:\underline{\boxed{\bf{\blue{H=45\:m}}}}

B] Horizontal Range :

\sf:\implies\:R=\dfrac{u^2sin2\theta}{g}

\sf:\implies\:R=\dfrac{(60)^2sin2(30)^{\circ}}{10}

\sf:\implies\:R=360\times sin60^{\circ}

\sf:\implies\:R=360\times\dfrac{\sqrt3}{2}

\sf:\implies\:R=180\times\sqrt3

:\implies\:\underline{\boxed{\bf{\blue{R=311.4\:m}}}}

____________________________________________________________________________________________________

Similar questions