Math, asked by Anonymous, 1 year ago

Plzzzzzz Solve this I will mark your answer as brilliant

Attachments:

Pitymys: Answer incomplete. I accidentally clicked "Add Your Answer" before completing the answer. Please revert.

Answers

Answered by Pitymys
1

The definite integral  \int\limits^1_0 {(\cos ^{-1} x)^2} \, dx  can be evaluated by using integration by parts.

 \int\limits^1_0 {(\cos ^{-1} x)^2} \, dx=\int\limits^1_0 {1.(\cos ^{-1} x)^2} \, dx\\\int\limits^1_0 {(\cos ^{-1} x)^2} \, dx=[x.(\cos ^{-1} x)^2} ]_0^1+\int\limits^1_0 {\frac{x}{\sqrt{1-x^2}}.(\cos ^{-1} x)} \, dx  \\\int\limits^1_0 {(\cos ^{-1} x)^2} \, dx=0-\int\limits^1_0 {\frac{-2x}{\sqrt{1-x^2}}.(\cos ^{-1} x)} \, dx   \\\int\limits^1_0 {(\cos ^{-1} x)^2} \, dx=-\int\limits^1_0 {\frac{-2x}{\sqrt{1-x^2}}.(\cos ^{-1} x)} \, dx

Again integrating by parts,

 \int\limits^1_0 {(\cos ^{-1} x)^2} \, dx=-2[\sqrt{1-x^2}(\cos ^{-1} x)]_0^1-2\int\limits^1_0 {\sqrt{1-x^2}.\frac{1}{\sqrt{1-x^2}}} \, dx\\<br />  \int\limits^1_0 {(\cos ^{-1} x)^2} \, dx=\pi-2\int\limits^1_0 {1} \, dx\\<br />  \int\limits^1_0 {(\cos ^{-1} x)^2} \, dx=\pi-2

Answered by RUDEGIRL
2

Answer:-

Use the differentiation method for this purpose

BE SMART.......^_^


Similar questions