plzzzzzzzzzzzzzzzzz help in 21 and 22
Attachments:
Answers
Answered by
4
Hello dear friend...
21.
Solution :
Given,
By simplifying the given equation,
We have to find,
2x +1
⇒2(0)+1 = 1
I was unable to understand '22.' problem....
Sorry very much....
VemugantiRahul:
mark brainliest if you find it helpful
Answered by
5
Hi there!
Here's the answer:
•°•°•°•°•°•<><><<><>><><>°•°•°•°•°•
(21)
Given
[5.6(x+3)]/0.7 = 24
=> [(5.6/0.7)× (x+3)] = 24
=> 8(x+3) = 24
=> x+3 = (24/8)
=> x+3 = 3
=> x = 3-3 = 0
•°• 2(x) + 1 = 2(0) + 1 = 1
•°• (2)nd Option is the Correct answer
•°•°•°•°•°•<><><<><>><><>°•°•°•°•°•
(22)
¶¶¶ Step-1: Find Values of x and Y
There exists 10 possible cases for Unit digit of 'A':
Unit digit of :
A _____ A² ______ A³
0 ______ 0 _______ 0
1 _______ 1 _______ 1
2 ______ 4 _______ 8
3 ______ 9 _______ 7
4 ______ 6 _______ 4
5 ______ 5 _______ 5
6 ______ 6 _______ 6
7 ______ 9 _______ 3
8 ______ 4 _______ 2
9 ______ 1 _______ 9
Now,
x = No. of possible cases in which unit digit of A and A³ are the same
When Unit digit of A ={0, 1, 4, 5, 6}, Unit digit of A³ remains unchanged.
•°• x = 6
y= No. of possible cases in which unit digit of A² and A³ are the same
This is possible are when Unit digit of A = {0, 1, 5, 6}
•°• y = 4
¶¶¶ Step- 2: Find x-y
x - y = 6 -4 = 2
•°• (2)nd Option is the Correct Answer
•°•°•°•°•°•<><><<><>><><>°•°•°•°•°•
¢#£€®$
:)
Hope it helps
Here's the answer:
•°•°•°•°•°•<><><<><>><><>°•°•°•°•°•
(21)
Given
[5.6(x+3)]/0.7 = 24
=> [(5.6/0.7)× (x+3)] = 24
=> 8(x+3) = 24
=> x+3 = (24/8)
=> x+3 = 3
=> x = 3-3 = 0
•°• 2(x) + 1 = 2(0) + 1 = 1
•°• (2)nd Option is the Correct answer
•°•°•°•°•°•<><><<><>><><>°•°•°•°•°•
(22)
¶¶¶ Step-1: Find Values of x and Y
There exists 10 possible cases for Unit digit of 'A':
Unit digit of :
A _____ A² ______ A³
0 ______ 0 _______ 0
1 _______ 1 _______ 1
2 ______ 4 _______ 8
3 ______ 9 _______ 7
4 ______ 6 _______ 4
5 ______ 5 _______ 5
6 ______ 6 _______ 6
7 ______ 9 _______ 3
8 ______ 4 _______ 2
9 ______ 1 _______ 9
Now,
x = No. of possible cases in which unit digit of A and A³ are the same
When Unit digit of A ={0, 1, 4, 5, 6}, Unit digit of A³ remains unchanged.
•°• x = 6
y= No. of possible cases in which unit digit of A² and A³ are the same
This is possible are when Unit digit of A = {0, 1, 5, 6}
•°• y = 4
¶¶¶ Step- 2: Find x-y
x - y = 6 -4 = 2
•°• (2)nd Option is the Correct Answer
•°•°•°•°•°•<><><<><>><><>°•°•°•°•°•
¢#£€®$
:)
Hope it helps
Similar questions