Math, asked by prajaktakhalate5, 9 months ago

Point B and C lie on tangent to the circle drawn at point A . Chord AD = Chord ED .
If m (arc EPF) =1/2 m (arc AQD) and m (arc DRE) = 84 ; then determine.
1 ) DAC 2 ) FDA 3) FED 4 ) BAF​

Answers

Answered by AditiHegde
61

Point B and C lie on tangent to the circle drawn at point A . Chord AD = Chord ED .

If m (arc EPF) =1/2 m (arc AQD) and m (arc DRE) = 84 ; then determine.

1 ) DAC 2 ) FDA 3) FED 4 ) BAF​

  • Construction: Join OD, OE, OA, OF, FD and AF.
  • 1 ) DAC
  • In △EOD and △AOD, we have:
  • AO=EO       (Radii of the circle)
  • OD=OD       (Common)
  • ED=AD        (Given)
  • ∴△EOD ≅ △AOD      (By SSS congruency)
  • i.e., ∠DEO=∠DAO   (CPCT)
  • Also, ∠DOE=∠AOD=84°  (CPCT, m(arcDRE) = 84°)
  • Now, in△EOD, we have:
  • ∠EOD+∠ODE+∠OED=180°  (Angle sum property)
  • ⇒2∠OED=180°−84°    
  • ⇒∠OED=48°
  • Hence, ∠OED=∠DAO=48°
  • ∠EAC=90°  (Radius is perpendicular to tangent)
  • ∠DAC=∠EAC−∠DAO=90°−48°=42°
  • ∠EOF=12∠AOD=42°
  • In △EOD and △AOD, we have:
  • AO=EO       (Radii of the circle)
  • OD=OD       (Common)
  • ED=AD        (Given)
  • ∴△EOD ≅ △AOD      (By SSS congruency)
  • i.e., ∠DEO=∠DAO   (CPCT)
  • Also, ∠DOE=∠AOD=84°  (CPCT, m(arcDRE) = 84°)
  • Now, in△EOD, we have:
  • ∠EOD+∠ODE+∠OED=180°  (Angle sum property)
  • ⇒2∠OED=180°-84°    
  • ⇒∠OED=48°
  • Hence, ∠OED=∠DAO=48°
  • ∠EAC=90°  (Radius is perpendicular to tangent)
  • ∠DAC=∠EAC-∠DAO=90°-48°=42°
  • ∠EOF=12
  • ∠AOD=42°
  • 2 ) FDA
  • ∠EOF+∠EOD+∠DOA+∠AOF=360°  (Complete angle)
  • ⇒∠AOF=360°− ∠EOF−∠EOD−∠DOA
  • ⇒∠AOF=360°−42°−84°−84°=150°
  • ∠EOF+∠EOD+∠DOA+∠AOF=360°  (Complete angle)
  • ⇒∠AOF=360°- ∠EOF-∠EOD-∠DOA
  • ⇒∠AOF=360°-42°-84°-84°=150°
  • We know that the angle subtended by an arc at the centre is twice the angle subtended at any part of the circle.
  • i.e., ∠FDA=12∠AFO=75°∠FDA=12∠AFO=75°
  • 3) FED
  • In△EOF, we have:
  • ∠EOF+∠FEO+∠EFO=180°  (Angle sum property)
  • ⇒2∠FEO=180°−42°    
  • ⇒∠FEO=69°
  • So, ∠FED=∠OED+∠FEO=48°+69°=117°
  • In△EOF, we have:
  • ∠EOF+∠FEO+∠EFO=180°  (Angle sum property)
  • ⇒2∠FEO=180°-42°    
  • ⇒∠FEO=69°
  • So, ∠FED=∠OED+∠FEO=48°+69°=117°
  • 4 ) BAF​
  • In△AOF, we have:
  • ∠AOF+∠FAO+∠OFA=180°  (Angle sum property)
  • ⇒2∠OAF=180°−150°    
  • ⇒∠OED=15°
  • So, ∠OAB=90°  (Radius is perpendicular to tangent)∴∠FAB=∠OAB−∠OAF=90°−15°=75°
Answered by omkarmored2007
4

Answer:

Answer in photo

Step-by-step explanation:

Please check photo

Attachments:
Similar questions