Point B and C lie on tangent to the circle drawn at point A . Chord AD = Chord ED .
If m (arc EPF) =1/2 m (arc AQD) and m (arc DRE) = 84 ; then determine.
1 ) DAC 2 ) FDA 3) FED 4 ) BAF
Answers
Answered by
61
Point B and C lie on tangent to the circle drawn at point A . Chord AD = Chord ED .
If m (arc EPF) =1/2 m (arc AQD) and m (arc DRE) = 84 ; then determine.
1 ) DAC 2 ) FDA 3) FED 4 ) BAF
- Construction: Join OD, OE, OA, OF, FD and AF.
- 1 ) DAC
- In △EOD and △AOD, we have:
- AO=EO (Radii of the circle)
- OD=OD (Common)
- ED=AD (Given)
- ∴△EOD ≅ △AOD (By SSS congruency)
- i.e., ∠DEO=∠DAO (CPCT)
- Also, ∠DOE=∠AOD=84° (CPCT, m(arcDRE) = 84°)
- Now, in△EOD, we have:
- ∠EOD+∠ODE+∠OED=180° (Angle sum property)
- ⇒2∠OED=180°−84°
- ⇒∠OED=48°
- Hence, ∠OED=∠DAO=48°
- ∠EAC=90° (Radius is perpendicular to tangent)
- ∠DAC=∠EAC−∠DAO=90°−48°=42°
- ∠EOF=12∠AOD=42°
- In △EOD and △AOD, we have:
- AO=EO (Radii of the circle)
- OD=OD (Common)
- ED=AD (Given)
- ∴△EOD ≅ △AOD (By SSS congruency)
- i.e., ∠DEO=∠DAO (CPCT)
- Also, ∠DOE=∠AOD=84° (CPCT, m(arcDRE) = 84°)
- Now, in△EOD, we have:
- ∠EOD+∠ODE+∠OED=180° (Angle sum property)
- ⇒2∠OED=180°-84°
- ⇒∠OED=48°
- Hence, ∠OED=∠DAO=48°
- ∠EAC=90° (Radius is perpendicular to tangent)
- ∠DAC=∠EAC-∠DAO=90°-48°=42°
- ∠EOF=12
- ∠AOD=42°
- 2 ) FDA
- ∠EOF+∠EOD+∠DOA+∠AOF=360° (Complete angle)
- ⇒∠AOF=360°− ∠EOF−∠EOD−∠DOA
- ⇒∠AOF=360°−42°−84°−84°=150°
- ∠EOF+∠EOD+∠DOA+∠AOF=360° (Complete angle)
- ⇒∠AOF=360°- ∠EOF-∠EOD-∠DOA
- ⇒∠AOF=360°-42°-84°-84°=150°
- We know that the angle subtended by an arc at the centre is twice the angle subtended at any part of the circle.
- i.e., ∠FDA=12∠AFO=75°∠FDA=12∠AFO=75°
- 3) FED
- In△EOF, we have:
- ∠EOF+∠FEO+∠EFO=180° (Angle sum property)
- ⇒2∠FEO=180°−42°
- ⇒∠FEO=69°
- So, ∠FED=∠OED+∠FEO=48°+69°=117°
- In△EOF, we have:
- ∠EOF+∠FEO+∠EFO=180° (Angle sum property)
- ⇒2∠FEO=180°-42°
- ⇒∠FEO=69°
- So, ∠FED=∠OED+∠FEO=48°+69°=117°
- 4 ) BAF
- In△AOF, we have:
- ∠AOF+∠FAO+∠OFA=180° (Angle sum property)
- ⇒2∠OAF=180°−150°
- ⇒∠OED=15°
- So, ∠OAB=90° (Radius is perpendicular to tangent)∴∠FAB=∠OAB−∠OAF=90°−15°=75°
Answered by
4
Answer:
Answer in photo
Step-by-step explanation:
Please check photo
Attachments:
Similar questions