Math, asked by bhaveshvelye, 3 months ago

Point on Y-axis which is equidistant from P(7,-8) , Q(1,4)

Answers

Answered by Trishakarmakar
2

Ⓐ︎Ⓝ︎Ⓢ︎Ⓦ︎Ⓔ︎Ⓡ︎

Let A(0,y) be be the point on Y axis which is equidistant from P(7,-8) and Q(1,4)

d(PA) = d(QA)

By distance formula,

√(0 - 7)² + [ y - (-8)]² = √(0 - 1)² + (y - 4)²

√ (-7)² + (y + 8)² = √ (-1)² + (y - 4)²

squaring both the side,

49 + (y + 8)² = 1 + (y - 4)²

49 + y² + 16y + 64 = 1 + y² - 8y + 16

16y + 113 = -8y + 17

16y + 8y = 17 - 113

24y = -96

y =  \frac{ - 96}{24}  =  - 4

co-ordinate of point A(0, -4)

Answered by arshan0786ansari
4

Step-by-step explanation:

P (7,-8)

R (0,y)

Q (1,4)

PR = RQ. (Equidistant Given)

By using distance formula.

 =  \sqrt{ {(x_{1} -  x_{2}})^{2}  + {(y_{1} -  y_{2}})^{2}}

 PR = \sqrt{ {(7_{} -  0_{}})^{2}  + {( - 8_{} -  y_{}})^{2}}

PR =  \sqrt{49 + 64 +  {y}^{2}  + 16y}

PR =  \sqrt{113 +  {y}^{2}  + 16y}

RQ =  \sqrt{( {0 - 1)}^{2}  +  {(y - 4)}^{2} }

 RQ = \sqrt{1 +  {y}^{2} + 16 - 8y }

RQ =   \sqrt{17 +  {y}^{2} - 8y }

PR = RQ

Compare

 \sqrt{113 +  {y}^{2}  + 16y} =  \sqrt{17 +  {y}^{2} - 8y }

113 +  {y}^{2}  + 16y = 17 +  {y}^{2}  - 8y

 {y}^{2}  -  {y}^{2}  + 16y + 8y = 17 - 113

24y =  - 96

y =   - \frac{96}{24}

y =  - 4

So

required Cordinate

(0,y) =(0,-4) Ans

I hope its help

And make sure hit like and follow and brilliant marks

Similar questions