Math, asked by swathi302661, 11 months ago

points A(3,1) ;B(5,1); C(a,b) and D(4,3)are vertices of a parallelogram ABCD .find the values of a and b​

Answers

Answered by Anonymous
4

  \large\bold{ \underline{ \underline{ \: Answer : \:  \:  \: }}}

 \to a = 6

 \to b = 3

\large\bold{ \underline{ \underline{ \:  Explanation : \:  \:  \: }}}

Mid point of AC = Mid point of BD

Mid point =  (  \bold{ \frac{X_{1} \:  +  \:  X_{2}}{2}  \:  , \: \frac{Y_{1} \:  + \:  Y _{2}}{2} })

According to the question ,

 \to ( \frac{3 \:  + \:  a}{2} , \frac{1 \:  + \:  b}{2})  =(  \frac{5 \: + \:  4}{2} ,  \frac{1 \: + \: 3}{2} )

 \large \bold{ \underline{ \:  \: For \: finding  \: the \: value \: of \: a \: \:  \:  }}

 \to \frac{3 + a}{2}  =  \frac{5 + 4}{2}  \\  \\   \to 3+a=5+4 \\  \ \\  \to a = 9-3 \\  \\ \to a=6

\large \bold{ \underline{ \:  \: For \:  finding \: the \: value \: of \: b \: \:  \:  }}

 \to \frac{1 + b}{2} =  \frac{1 + 3}{2}  \\  \\  \to</p><p>1+b=1+3</p><p> \\  \\  \to</p><p>b= 4-1</p><p> \\  \\  \to</p><p>b= 3</p><p>

Therefore , a = 6 and b = 3

Similar questions