Math, asked by AniruddhVenkatesan6, 1 month ago

Points P, Q, R and S, in that order, divide a line segment AB, into 5 equal parts. A is at ( 1, 2)  and B is at ( 6, 7 ). P is closest to A.Find the coordinates of S.​

Answers

Answered by user0888
130

\large\text{\underline{Let's begin.}}

\large{\text{Basic Concepts}}

\text{Internal division formula.}

\hookrightarrow \large\boxed{P\left(\dfrac{mx_{2}+nx_{1}}{m+n}, \dfrac{my_{2}+ny_{1}}{m+n}\right)}

\text{Explanation for the formula.}

Here, (x_{1},y_{1}),(x_{2},y_{2}) are two coordinates and m:n is the ratio of division.

\large\text{\underline{Solution}}

\overline{AB} is internally and equally divided by four points P,Q,R,S, in order. P is the closest point to A.

\hookrightarrow \overline{AP}:\overline{PQ}:\overline{QR}:\overline{RS}:\overline{SB}=1:1:1:1:1

\hookrightarrow \large\boxed{\overline{AS}:\overline{SB}=4:1}

As S divides \overline{AB} into 4:1 internally, to apply the formula we find the values,

  • m=4,n=1
  • x_{1}=1,x_{2}=6
  • y_{1}=2,y_{2}=7

Then,

\hookrightarrow S\left(\dfrac{4\times6+1\times1}{4+1},\dfrac{4\times7+1\times2}{4+1}\right)

\hookrightarrow S(\dfrac{25}{5},\dfrac{30}{5})

\therefore \large\boxed{S(5,6)}

\large\text{\underline{Conclusion}}

Hence, the coordinates of S are (5,6).

\large{\text{\underline{Learn more.}}}

\text{Internal division formula.}

\hookrightarrow \large\boxed{P\left(\dfrac{mx_{2}+nx_{1}}{m+n}, \dfrac{my_{2}+ny_{1}}{m+n}\right)}

\text{Explanation for the formula.}

It is used when a point on a line divides a line segment.

\text{External division formula.}

\hookrightarrow \large\boxed{P\left(\dfrac{mx_{2}-nx_{1}}{m-n}, \dfrac{my_{2}-ny_{1}}{m-n}\right)}

\text{Explanation for the formula.}

It is used when a point outside a line divides a line segment.

\text{Midpoint formula.}

\hookrightarrow \large\boxed{P\left(\dfrac{x_{1}+x_{2}}{2}, \dfrac{y_{1}+y_{2}}{2}\right)}

\text{Explanation for the formula.}

It is a special case of internal division, as the ratio of division is 1:1.

Attachments:
Answered by MяMαgıcıαη
103

Answer:

‣ Coordinates of S \mapsto\:{\boxed{\tt{(5,\:6)}}}

Explanation:

Given info,

Points P, Q, R and S, in that order, divide a line segment AB, into 5 equal parts. A is at (1, 2) and B is at (6, 7). P is closest to A. Find the coordinates of S.

  • Coordinates of A = (1, 2)
  • Coordinates of B = (6, 7)
  • Coordinates of S = ?

⚘ As points P, Q, R, S divides line segment into 5 equal parts. So,

  • AP:PQ:QR:RS:SB = 1:1:1:1:1
  • AS:SB = (1 + 1 + 1 + 1):1 = 4:1

Using section formula for finding coordinates of 'S' ::

\boxed{\underline{\underline{\bf{\red{\Bigg(\dfrac{m_{1}x_{2} + m_{2}x_{1}}{m_{1} + m _{2}},\:\dfrac{m_{1}y_{2} + m_{2}y_{1}}{m_{1} + m _{2}}\Bigg)}}}}}\:\bf{\dag}

We have,

  • \sf x_{1} = 1, \sf x_{2} = 6
  • \sf y_{1} = 2, \sf y_{2} = 7
  • \sf m_{1} = 4, \sf m_{2} = 1

Putting all values,

\\ \longrightarrow\:\tt S = \Bigg(\dfrac{(4)(6) + (1)(1)}{4 + 1},\:\dfrac{(4)(7) + (1)(2)}{4 + 1}\Bigg)

\\ \longrightarrow\:\tt S = \Bigg(\dfrac{24 + 1}{5},\:\dfrac{28 + 2}{5}\Bigg)

\\ \longrightarrow\:\tt S = \Bigg({\cancel{\dfrac{25}{5}}},\:{\cancel{\dfrac{30}{5}}}\Bigg)

\\ \longrightarrow\:{\underline{\boxed{\tt{S = (5,\:6)}}}}\:\bigstar

  • Hence, coordinates of S are (5, 6).

More to know:

  • For finding distance between two points, we use distance formula i.e,\sf \sqrt{\bigg(x_{2} - x_{1}\bigg)^2 + \bigg(y_{2} - y_{1}\bigg)^2}

  • For finding the ratio in which a line segment is divided by a point, we use section formula i.e, \sf \bigg(\dfrac{m_{1}x_{2} + m_{2}x_{1}}{m_{1} + m_{2}}\:,\:\dfrac{m_{1}y_{2} + m_{2}y_{1}}{m_{1} + m_{2}}\bigg)

  • The area of triangle formed by points \sf (x_{1},\:y_{1}), \sf (x_{2},\:y_{2}) and \sf (x_{3},\:y_{3}) is the numerical value of the expression :: \small\sf\dfrac{1}{2}\Big[x_{1}\big(y_{2} - y_{3}\big) + x_{2}\big(y_{3} - y_{1}\big) + x_{3}\big(y_{1} - y_{2}\big)\Big]

  • The mid - point of the line segment joining the points \sf A(x_{1},\:y_{1}) and \sf B(x_{2},\:y_{2}) is :: \sf \Bigg(\dfrac{x_{1} + x_{2}}{2},\:\dfrac{y_{1} + y_{2}}{2}\Bigg)

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Attachments:
Similar questions