Math, asked by monissh, 1 year ago

population of a village increased by 54000 in 2003 by 5%p.a find the population in 2001

Answers

Answered by shreyamghoshcob
2

Given that population in 2003 = 54000. Population of a place increased at the rate of 5%per annum. Population in 2002 at the rate of 5%per annum = 54000 x ( 5 / 100) = 2700 = 54000 - 2700 = 51300. Population in 2001 at the rate of 5%per annum = 51300 x ( 5 / 100) = 2565. = 51300 - 2565 = 48735. Now population in 2003 = 54000. Population of a place increased at the rate of 5%per annum. Population in 2004 at the rate of 5%per annum = 54000 x ( 5 / 100) = 2700 = 54000 + 2700 = 56700. Population in 2005 at the rate of 5%per annum = 56700 x ( 5 / 100) = 2835 = 56700 + 2835 = 59,535.


monissh: ok nice answer by compound interest formula pls
monissh: mbi
Answered by simran7539
32

Answer:

{\huge{\underline{\underline{\sf{\blue{Solution :-}}}}}}

Hare, Population in 2003 = 44100

Rate of growth of population (R) = 5% per annum.

Number of years (n) = 2

Let P be the population in 2001.

Then , population after n years

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   =  \: p \: (1 \:  \frac{R}{100})^{n}

i.e.,  \: population \:  after  \: 2  \: years = P ( \: 1 + \frac{5}{100})^{2}

or \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: 44100 \: p \:  \frac{21}{20} ^{2}

or \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:    \frac{20^{2} \times 44100 }{21^{2} }  = p

or \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: p \:  =  \:  \frac{44100 \times 400}{441}

or \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: p \:  = 4000

Thus, the population of the village in 2001 was 40000.

Similar questions