Math, asked by sushant4658, 9 months ago

power 4 + x power cube + b x power square + 3 x + the the sigma of alpha square plus beta square plus gamma square is equals to how much

Answers

Answered by aryan073
0

Answer:

&lt;!DOCTYPE html&gt;</p><p></p><p>&lt;html lang="en"&gt;</p><p></p><p>&lt;head&gt;</p><p></p><p>&lt;meta charset="UTF-8"&gt;</p><p></p><p>&lt;meta name="viewport" content="width=device-width, initial-scale=1.0"&gt;</p><p></p><p>&lt;title&gt;Arc reacter&lt;/title&gt;</p><p></p><p>&lt;link rel="stylesheet" href="design.css" /&gt;</p><p></p><p>&lt;/head&gt;</p><p></p><p>&lt;body&gt;</p><p></p><p>&lt;div class="fullpage-wrapper"&gt;</p><p></p><p>&lt;div class="reactor-container"&gt;</p><p></p><p>&lt;div class="reactor-container-inner circle abs-center"&gt;&lt;/div&gt;</p><p></p><p>&lt;div class="tunnel circle abs-center"&gt;&lt;/div&gt;</p><p></p><p>&lt;div class="core-wrapper circle abs-center"&gt;&lt;/div&gt;</p><p></p><p>&lt;div class="core-outer circle abs-center"&gt;&lt;/div&gt;</p><p></p><p>&lt;div class="core-inner circle abs-center"&gt;&lt;/div&gt;</p><p></p><p>&lt;div class="coil-container"&gt;</p><p></p><p>&lt;div class="coil coil-1"&gt;&lt;/div&gt;</p><p></p><p>&lt;div class="coil coil-2"&gt;&lt;/div&gt;</p><p></p><p>&lt;div class="coil coil-3"&gt;&lt;/div&gt;</p><p></p><p>&lt;div class="coil coil-4"&gt;&lt;/div&gt;</p><p></p><p>&lt;div class="coil coil-5"&gt;&lt;/div&gt;</p><p></p><p>&lt;div class="coil coil-6"&gt;&lt;/div&gt;</p><p></p><p>&lt;div class="coil coil-7"&gt;&lt;/div&gt;</p><p></p><p>&lt;div class="coil coil-8"&gt;&lt;/div&gt;</p><p></p><p>&lt;/div&gt;</p><p></p><p>&lt;/div&gt;</p><p></p><p>&lt;/div&gt;</p><p></p><p>&lt;style&gt;</p><p></p><p>body { margin: 0; } .fullpage-wrapper { width: 100%; height: 100vh; background: radial-gradient(#353c44, #222931); display: flex; } .reactor-container { width: 300px; height: 300px; margin: auto; border: 1px dashed #888; position: relative; border-radius: 50%; background-color: #384c50; border: 1px solid rgb(18, 20, 20); box-shadow: 0px 0px 32px 8px rgb(18, 20, 20), 0px 0px 4px 1px rgb(18, 20, 20) inset; } .reactor-container-inner { height: 238px; width: 238px; background-color: rgb(22, 26, 27);; box-shadow: 0px 0px 4px 1px #52FEFE; } .circle { border-radius: 50%; } .abs-center { position: absolute; top: 0; right: 0; bottom: 0; left: 0; margin: auto; } .core-inner { width: 70px; height: 70px; border: 5px solid #1B4E5F; background-color: #FFFFFF; box-shadow: 0px 0px 7px 5px #52FEFE, 0px 0px 10px 10px #52FEFE inset; } .core-outer { width: 120px; height: 120px; border: 1px solid #52FEFE; background-color: #FFFFFF; box-shadow: 0px 0px 2px 1px #52FEFE, 0px 0px 10px 5px #52FEFE inset; } .core-wrapper { width: 180px; height: 180px; background-color: #073c4b; box-shadow: 0px 0px 5px 4px #52FEFE, 0px 0px 6px 2px #52FEFE inset; } .tunnel { width: 220px; height: 220px; background-color: #FFFFFF; box-shadow: 0px 0px 5px 1px #52FEFE, 0px 0px 5px 4px #52FEFE inset; } .coil-container { position: relative; width: 100%; height: 100%; animation: 3s infinite linear reactor-anim; } .coil { position: absolute; width: 30px; height: 20px; top: calc(50% - 110px); left: calc(50% - 15px); transform-origin: 15px 110px; background-color:#073c4b; box-shadow: 0px 0px 5px #52FEFE inset; } .coil-1{ transform: rotate(0deg); } .coil-2 { transform: rotate(45deg); } .coil-3 { transform: rotate(90deg); } .coil-4 { transform: rotate(135deg); } .coil-5 { transform: rotate(180deg); } .coil-6 { transform: rotate(225deg); } .coil-7 { transform: rotate(270deg); } .coil-8 { transform: rotate(315deg); } @keyframes reactor-anim { from { transform: rotate(0deg); } to { transform: rotate(360deg); } }</p><p></p><p>&lt;/style&gt;</p><p></p><p>&lt;/body&gt;</p><p>&lt;/html&gt;

4+x³+bx²+3x

Answered by kilwantsingh
0

Step-by-step explanation:

\alpha ^2+\beta ^2+\gamma ^2+\delta ^2=a^2-2bα

2

2

2

2

=a

2

−2b

Step-by-step explanation:

Given that

x^4+ax^3+bx^2+cx+d=0x

4

+ax

3

+bx

2

+cx+d=0

This is the 4th order equation .

We have to find

\sum \alpha ^2=\alpha ^2+\beta ^2+\gamma ^2+\delta ^2∑α

2

2

2

2

2

As we know that

\left ( a+b+c +d\right )^2=a^2+b^2+c^2+2\left ( ab+bc+ac+ad+db+cd \right )(a+b+c+d)

2

=a

2

+b

2

+c

2

+2(ab+bc+ac+ad+db+cd)

α+β+γ+δ= -a

αβ+βγ+γδ+δα+βδ+αγ= b

So

\alpha ^2+\beta ^2+\gamma ^2+\delta ^2=\left ( \alpha +\beta +\gamma +\delta \right )^2-2\left ( \alpha \beta +\beta \gamma +\gamma \delta +\delta \alpha+\alpha \gamma +\beta \delta \right )α

2

2

2

2

=(α+β+γ+δ)

2

−2(αβ+βγ+γδ+δα+αγ+βδ)

Now by putting the values

\alpha ^2+\beta ^2+\gamma ^2+\delta ^2=a^2-2bα

2

2

2

2

=a

2

−2b

So

\alpha ^2+\beta ^2+\gamma ^2+\delta ^2=a^2-2bα

2

2

2

2

=a

2

−2b

Similar questions