PQ AND PR are tangents to a circle wirh with centre A if angle QPA = 27 find angle QAR
Answers
Here
Given
<QPA= 27*
Proof: In triangle QPA and RPA
QA=AR............(radii of circle)
PQ=PR............(tangent from a
point to the circle
Circle are equal)
PA=PA............(common side)
:. Triangle QPA congruent to RPA
by S-S-S
Hence <QPA=<RPA
:.<QPR=27+27
<QPR=54
Hence using property tangent is perpendicular to radius
:. <PQA=<PRA=90*
:. <PQA+<PRA+<QPR+<QAR=360*..........(sum of quadilateral)
:.90*+90*+54*+<QAR=360*
:.234*+<QAR=360*
:.<QAR=360-234
hence <QAR=126*
Here
Given
<QPA= 27*
Proof: In triangle QPA and RPA
QA=AR............(radii of circle)
PQ=PR............(tangent from a
point to the circle
Circle are equal)
PA=PA............(common side)
:. Triangle QPA congruent to RPA
by S-S-S
Hence <QPA=<RPA
:.<QPR=27+27
<QPR=54
Hence using property tangent is perpendicular to radius
:. <PQA=<PRA=90*
:. <PQA+<PRA+<QPR+<QAR=360*..........(sum of quadilateral)
:.90*+90*+54*+<QAR=360*
:.234*+<QAR=360*
:.<QAR=360-234
hence <QAR=126*