Math, asked by srikar3133, 11 months ago

Pqr=a^x , qrs=a^y ,rsp=a^z then pqrs=?

Answers

Answered by mysticd
5

 Given \: pqr = a^x \: ---(1), \\ qrs = a^y \: ---(2)\: and \\ rsp = a^z \: --(3)

/* Multiplying equations (1), (2) and (3) , we get */

 ( pqr ) \times (qrs ) \times (rsp) = a^x \times a^{y} \times a^{z}

 \implies p^{2} \times r^{2} \times q^{2} \times s^{2} = a^{ x + y + z }

/* By Exponential Law */

 \boxed { \pink { a^{m} \times a^{n} = a^{m+n} }}

 \implies (pqrs)^{2} = a^{ x + y + z }

 \implies pqrs = a^{\frac{ x + y + z}{2} }

Therefore.,

 \red{ Value \:of \: pqrs} \green { = a^{\frac{ x + y + z}{2} }}

•••♪

Similar questions