Math, asked by sreedevisrinivasan, 11 months ago

PQR is a right angled triangle, where angle P = 90 degree
PD is perpendicular to QR.
PQ : √PR =​

Attachments:

Answers

Answered by Anonymous
2

Answer:

hope it helps you friend.

Attachments:
Answered by DeniceSandidge
3

\frac{PQ}{\sqrt{PR}} = \sqrt{\sqrt{QR} \times \frac{QD}{\sqrt{DR}}}

Step-by-step explanation:

First we take here \triangle PQR  

so in this triangle

h² = p² + b²   ..............1

(QR)² = (QP)² + (PR)²   ..........2

and

in \triangle PDQ

(PQ)² = (PD)² + (QD)²   ...........3

and

In \triangle PDR  

(PR)² = (PD)² + (DR)²    ...........4

so from equation 3 and 4,  we equate (PD)²

(PQ)² - (QD)² = (PR)² - (DR)²

(PQ)² - (PR)² = (QD)² - (DR)²

(PQ)² - (PR)² = (QD + DR ) × (QD -DR)

(PQ)² - (PR)² = QR  ×  ( QD -DR ) .......5

and

(PQ)² - (PR)² = (QR)²    .............6

so from above 5 and 6 equation

2 × (PQ)² = QR × ( QR + QD - DR )

2 × (PQ)² = QR × ( QD + DR  + QD - DR )

2 × (PQ)² = 2 × QD ×  QR

(PQ)² =  QD ×  QR   .........7

and

2 (PR)² = (QR)²  -  QR × ( QD - DC )

2 (PR)² = QR × ( QD - DR - QD + DR )

(PR)²  = DR + QR  ........... 8

and

so now for PQ : √PR

\frac{PQ^2}{PR} = \frac{QD \times QR}{\sqrt{QR \times DR}}    ..........9

(\frac{PQ}{\sqrt{PR}})^2 = \sqrt{QR} \times \frac{QD}{\sqrt{DR}}  

\frac{PQ}{\sqrt{PR}} = \sqrt{\sqrt{QR} \times \frac{QD}{\sqrt{DR}}}  

Learn more :

1. https://brainly.in/question/8251099

Similar questions