Math, asked by Sanchari8468, 10 months ago

PQR is a triangle in which PQ=PR=26cm. S is a point on segment QR such that SR=3cm. And PS=25cm. Find length of QS.

Answers

Answered by MaheswariS
1

\textbf{Given:}

\text{In $\triangle$PQR, PQ=PR=26 cm, SR= cm, PS=25 cm}

\textbf{To find:}

\text{Length of QS}

\textbf{Solution:}

\text{First we find area of $\triangle$PSR,}

\text{We apply heron's formula}

s=\dfrac{26+25+3}{2}=\dfrac{54}{2}=27

\textbf{Area}\bf=\sqrt{s(s-a)(s-b)(s-c)}

\text{Area}=\sqrt{27(27-26)(27-25)(27-3)}

\text{Area}=\sqrt{27(1)(2)(24)}

\text{Area}=\sqrt{(9{\times}3)(2)(4{\times}3{\times}2)}

\text{Area}=3{\times}3{\times}2{\times}2=36\;cm^2

\text{Draw, PT$\perp$QR}

\text{Then,}\bf\;QT=TR_____(1)

\text{Now, Area of $\triangle$PSR}=36\;cm^2

\implies\,\dfrac{1}{2}{\times}SR{\times}PT=36

\implies\,\dfrac{1}{2}{\times}3{\times}PT=36

\implies\bf\,PT=24

\text{In right angled $\triangle$PTS, by pythagoras theorem}

PS^2=PT^2+ST^2

25^2=24^2+ST^2

625=576+ST^2

625-576=ST^2

ST^2=49

\implies\,ST=7\;cm

TR=ST+SR=7+3=10

\text{Using (1)}

\implies\;QT=10\;cm

\text{Finally,}

QS=QT+ST

QS=10+7

\implies\boxed{\bf\;QS=17\;cm}

Find more:

In ∆ RST, line PQ || side ST, R-P-S and R-Q-T, RP = 4, PS = 6, RQ = 3. Find QT.

https://brainly.in/question/16748997

The length of PR=12cm and q is a point lies on PR. Find the value of PQ^2+RQ^2+2PQRQ

https://brainly.in/question/19177424

\text{}

Attachments:
Similar questions