Math, asked by ayanmohkmr, 4 days ago

PQRS is a parallelogram. A and B are midpoints of the sides PQ and RS
respectively.Prove that the line segment PB and AR trisect the diagonal SQ.

Attachments:

Answers

Answered by pradhanmadhumita2021
5

 \sf \orange{ABCD \:  is  \: //  \: gm }\\ \sf \orange{AB \:  //  \: CD} \\ \sf \orange{AE \:  // \: FC} \\ \sf \orange{⇒ AB = CD} \\  \sf \orange{\frac{1}{2}AB =\frac{1}{2}CD} \\ \sf \orange{AE  \: =  \: EC} \\\sf \orange{∆ECF  \: is \:  //  \: gm }\\\sf \orange{ In DQC} \\ \sf \orange{F \:  is \:  mid  \: point \:  of \:  DC} \\\sf \orange{ FP \:  //  \: CQ} \\ \sf \orange{By  \: converse \:  of  \: mid \:  point \:  theorem  \: P  \: is  \: mid  \:point  \: of  \: DQ} \\\sf \orange{ ⇒ DP  \: = \:  PQ \:  (1)} \\ \sf \orange{AF  \: and \:  EC \:  bisect \:  BD} \\\sf \orange{In \:  ΔΑΡΒ}\\ \sf \orange{E  \: is \:  mid \:  point \:  of  \: AB} \\ \sf \orange{EQ \:  //  \: AP }\\ \sf \orange{By  \: converse  \: of \:  MPT \:  (mid \:  point \:  theorem)} \\\sf \orange{ Q \:  is \:  mid  \: point \:  of \:  PB }\\  \sf \orange{⇒PQ \:  = QB  \: (2)} \\ \sf \orange{By \:  (1)  \: and \:  (2)} \\ \sf \orange{⇒ PQ  \: =  \: QB \:  =  \: DP  }\\\sf \orange{ AF \:  and  \: EC  \: bisect  \: BD.}

Attachments:
Similar questions