PQRS is a trapezium in which PQ || SR and PS = QR. It A,B,C,D be respectively the midpoints of QP, QS,RS and RP , then show that ABCD is a rhombus
Answers
Answered by
1
Answer:
Step-by-step explanation:
IN PQRS,QandRarethemidpointsofBDandCDrespectively.QR∥BCandQR=21BC[AccordingtoMidpointTheorm]In△ABC,PandSaremidpointsofBAandACrespectively.Similarly,PS∥BCandPS=21BC(AccordingtoMidpointTheorm)∴PS∥QRandPS=QR[Eachequalto21BC]∴PQRSisaparallelogram.In△ACD,SandRarethemidpointsofACandCDrespectively.SR∥ADandSR=21AD=21BC[∵AD=BC(Given)]∴PS=QR=SR=PQ.Hence,ABCDisarhombus
Similar questions