Math, asked by preeti3940, 1 year ago

Pqx^2-(p^2+q^2)x+pq=0 solve this problem by using quadratic formula Please don't spam with me

Answers

Answered by brunoconti
30

here comes a solution

Attachments:
Answered by vinod04jangid
1

Answer:

\frac{p}{q} and \frac{q}{p}

Step-by-step explanation:

Given:- pqx^{2} - (p^{2}+ q^{2} )x+pq = 0

To Find:- Roots using formula of quadratic equation.

Solution:-

pqx^{2} - (p^{2}+ q^{2} )x+pq = 0

Here, a = pq, b = -(p^{2} +q^{2} ), c = pq

Putting the values in the formula, x = \frac{-b+\sqrt[]{b^{2}-4ac } }{2a} , \frac{-b-\sqrt[]{b^{2}-4ac } }{2a}

⇒x =  \frac{(p^{2} +q^{2} )+\sqrt[]{(-(p^{2} +q^{2}) )^{2}-4(pq)(pq) } }{2(pq)} , \frac{(p^{2} +q^{2} )-\sqrt[]{(-(p^{2} +q^{2}) )^{2}-4(pq)(pq) } }{2(pq)}

⇒ x = \frac{(p^{2} +q^{2} )+\sqrt[]{((p^{2} +q^{2}) )^{2}-4(p^{2} q^{2} ) } }{2pq}, \frac{(p^{2} +q^{2} )-\sqrt[]{((p^{2} +q^{2}) )^{2}-4(p^{2} q^{2} ) } }{2pq}

⇒ x = \frac{(p^{2} +q^{2} )+\sqrt[]{((p^{2} -q^{2}) )^{2} } }{2pq},\frac{(p^{2} +q^{2} )-\sqrt[]{((p^{2} -q^{2}) )^{2} } }{2pq}

⇒ x = \frac{(p^{2} +q^{2} )+{(p^{2} -q^{2}) } }{2pq}, \frac{(p^{2} +q^{2} )-{(p^{2} -q^{2}) } }{2pq}

⇒ x = \frac{p^{2} +q^{2} +{p^{2} -q^{2} } }{2pq}, \frac{p^{2} +q^{2} -{p^{2} +q^{2} } }{2pq}

⇒ x = \frac{2p^{2} }{2pq}, \frac{2q^{2} }{2pq}

⇒ x = \frac{p}{q} , \frac{q}{p}

Therefore, the roots of the equation pqx^{2} - (p^{2}+ q^{2} )x+pq = 0 are \frac{p}{q} and \frac{q}{p}.

#SPJ2

Similar questions