Math, asked by Rexlord7958, 1 year ago

PR>PQ and PS bisects angle QPR. Prove that angle PSR > angle PSQ.

Answers

Answered by snehal1009
5

hope this will help you

Attachments:
Answered by Anonymous
6

\huge\tt\red{GIVEN:-}

\small\tt{In\:∆PQR,}

\small\tt{(i)PR>PQ}

\small\tt{(ii)PS\:bisects\:\angle{QPR}=\angle{1}=\angle{2}}

\huge\tt\orange{TO\:PROVE:-}

\small\tt{(i)\angle{PSR}>\angle{PSQ}}

\huge\tt\purple{PROOF:-}

\small\tt{In\:∆PQS,}

\small\tt{By\:exterior\:angle\:property}

\small\tt{\angle{PSQ}=\angle{Q}+\angle{1}}..........(1)

\small\tt{In\:∆PSR,}

\small\tt{\angle{PSQ}=\angle{R}+\angle{2}}..........(2)

\small\tt{\angle{Q}+\angle{1}>\angle{R}+\angle{1}}

\small\tt{\angle{PSR}>\angle{PSQ}}

Similar questions