Math, asked by MiniDoraemon, 1 month ago

Practice set 1( mathamatics)
Important for jee mains exam ​

Attachments:

Answers

Answered by Anonymous
0

  \huge \frac{1}{ \sqrt{2} }

Attachments:
Answered by mathdude500
5

\large\underline{\sf{Solution-}}

Let we assume that for the ellipse

\rm :\longmapsto\:\dfrac{ {x}^{2} }{ {a}^{2} }  + \dfrac{ {y}^{2} }{ {b}^{2} }  = 1 \:  \: with \: a > b

So, end point of minor axis be (0, b) and (0, - b).

Let assume that the one end point of minor axis be represented as A(0, b) and other as F (0, - b).

Now,

We know that,

Coordinates of Focus is given by (ae, 0) and (- ae, 0).

where, e is eccentricity of ellipse and is given by

 \blue{\boxed{ \sf{ \:  {b}^{2} =  {a}^{2}(1 -  {e}^{2})}}}

\rm :\implies\: {a}^{2} =  {b}^{2}  +  {a}^{2} {e}^{2}  -  -  - (1)

Now,

Let assume that coordinates of focus be represented by B and C.

That means,

Coordinates of B be ( - ae, 0 )

and

Coordinates of C be ( ae, 0 )

Now,

We further know that,

Distance between focus = 2ae

So, it implies, BC = 2ae.

Now,

\rm :\longmapsto\:AB =  \sqrt{ {(0 + ae)}^{2}  + (b - 0)^{2} }

\rm :\longmapsto\:AB =  \sqrt{ { a^{2} e}^{2}  + b^{2} }

\rm :\longmapsto\:AB =  \sqrt{{a^{2 }}} \:  \:  \:  \:  \{ \: using \: (1) \}

\bf\implies \:AB = a

Again,

\rm :\longmapsto\:AC=  \sqrt{ {(0 - ae)}^{2}  + (b - 0)^{2} }

\rm :\longmapsto\:AC=  \sqrt{ {(ae)}^{2}  + b^{2} }

\rm :\longmapsto\:AC=  \sqrt{ {a^{2} e}^{2}  + b^{2} }

\rm :\longmapsto\:AC =  \sqrt{{a^{2 }}} \:  \:  \:  \:  \{ \: using \: (1) \}

\bf\implies \:AC = a

So, Now In right angle triangle ABC, we have

\rm :\longmapsto\:AB = a

\rm :\longmapsto\:AC = a

\rm :\longmapsto\:BC = 2ae

\rm :\longmapsto\: \angle \: BAC \:  =  \: 90 \degree

Using Pythagoras Theorem,

\rm :\longmapsto\: {AB}^{2}  +  {AC}^{2}  =  {BC}^{2}

\rm :\longmapsto\: {a}^{2} +  {a}^{2}  =  4{a}^{2} {e}^{2}

\rm :\longmapsto\: 2{a}^{2} =  4{a}^{2} {e}^{2}

\rm :\longmapsto\: 1=  2{e}^{2}

\rm :\longmapsto\: {e}^{2}  = \dfrac{1}{2}

\bf\implies \:e = \dfrac{1}{ \sqrt{2} }

Hence,

  • Option (c) is correct.

Attachments:
Similar questions