Math, asked by Sapnakhillare1946, 10 months ago

Practice Set 2.3
ic equations by completing the
(2) x² + 2x - 5=0 de
(5) 2y2 + 9y + 10 = 0​

Answers

Answered by dna63
1

\textit{\large{\underline{\underline{EXPLANATION:}}}}

\textbf{\underline{Que 2,,}}</p><p>

 {x}^{2}  + 2x - 5 = 0 \\  =  &gt;  {(x)}^{2}  + 2 \times x \times 1 +  {1}^{2}  - 5 = 1 {}^{2}  \\  =  &gt; (x + 1) {}^{2}  = 1 + 5 \\  =  &gt; x + 1 =   \pm \sqrt{6}  \\  =  &gt; x =   \pm( \sqrt{6}  - 1) \\  =  &gt; x =  \sqrt{6}  - 1 \: or \: 1 -  \sqrt{6}

\textbf{\underline{Que 5,,}}</p><p>

2 {y}^{2}  + 9y + 10 = 0 \\   =  &gt; ( \sqrt{2} y) {}^{2}  + 2   \times  \sqrt{2} y \times  \frac{9}{2 \sqrt{2} }  +  {( \frac{9}{2 \sqrt{2} } })^{2}   =  - 10 + ( \frac{9}{2 \sqrt{2} }) {}^{2}   \\  =  &gt; ( \sqrt{2} y +  \frac{9}{2 \sqrt{2} } ) {}^{2}  =  - 10 +  \frac{81}{8}  \\  =  &gt;  {( \sqrt{2}y +  \frac{9}{2 \sqrt{2} }  )}^{2}  =  \frac{1}{8}  \\  =  &gt;  \sqrt{2} y +  \frac{9}{2 \sqrt{2} }  =   \pm\sqrt{ \frac{1}{8} }  \\  =  &gt;  \sqrt{2} y =  \frac{1}{2 \sqrt{2} }   \pm   \frac{9}{2 \sqrt{2} }  \\  =  &gt;  \sqrt{2} y =  \frac{  \pm  8}{2 \sqrt{2} }  \\  =  &gt; y =  \frac{8}{4}  \: or \:  \frac{ - 8}{4}  \\  =  &gt; y = 2 \: or   - 2

Hope it helps ❣️❣️❣️

Similar questions