CBSE BOARD XII, asked by monikaprajapati225, 2 months ago

preboard leelavati school




preboard exam


Answers

Answered by prajithnagasai
1

Answer:

▪Key Concept :-

☆ Relationship b/w Zeros And Coefficients of a Cubic Polynomial

If α , β and γ are the Zeros of a Cubic Polynomial

of the Form:

\bf a{x}^{3} + b {x}^{2} + cx + dax

3

+bx

2

+cx+d

Then,

\begin{gathered} \bf \alpha + \beta + \gamma = - \frac { b}{a} \\ \\ \bf\alpha \beta + \beta \gamma + \gamma \alpha = \frac{c}{a} \\ \\ \bf \alpha \beta \gamma = - \frac{d}{a} \end{gathered}

α+β+γ=−

a

b

αβ+βγ+γα=

a

c

αβγ=−

a

d

___________________________

▪Solution :-

Here we have,

\bf\alpha + \beta + \gamma = - \frac{( - 2)}{2} = 1α+β+γ=−

2

(−2)

=1

\begin{gathered} \bf \alpha \beta + \beta \gamma + \gamma \alpha = \dfrac{3}{2} \\ \\ \bf \alpha \beta \gamma = - \frac{ ( - 4)}{2} = 2\end{gathered}

αβ+βγ+γα=

2

3

αβγ=−

2

(−4)

=2

Now ,

\begin{gathered} \frac{ \alpha }{ \beta \gamma } + \frac{ \beta }{ \gamma \alpha } + \frac{ \gamma }{ \alpha \beta } \\ \\ = \frac{ { \alpha }^{2} + { \beta }^{2} + { \gamma }^{2} }{ \alpha \beta \gamma } \\ \\ \bf \bigg \{ \frac{ \large Add \: and \: Subtract}{ \underline{2( \alpha \beta + \beta \gamma + \gamma \alpha ) \: in \: Numerator } }\bigg \}\end{gathered}

βγ

α

+

γα

β

+

αβ

γ

=

αβγ

α

2

2

2

{

2(αβ+βγ+γα)inNumerator

AddandSubtract

}

\begin{gathered} = \frac{( { \alpha + \beta + \gamma )}^{2} - 2( \alpha \beta + \beta \gamma + \gamma \alpha) }{ \alpha \beta \gamma } \\ \\ \bf \Large\{ Putting \: \: values \}\end{gathered}

=

αβγ

(α+β+γ)

2

−2(αβ+βγ+γα)

{Puttingvalues}

\begin{gathered} = \dfrac{ {(1)}^{2} - 2( \dfrac{3}{2} )}{2} \\ \\ = \frac{1 - 3}{2} \\ \\ = \frac{ - 2}{ \: \: \: 2} \\ \\ = \huge\purple{{ {\bf \: - 1}}}\end{gathered}

=

2

(1)

2

−2(

2

3

)

=

2

1−3

=

2

−2

=−1

\begin{gathered} \Large \red{\mathfrak{ \text{W}hich \: \: is \: \: the \: \: required} }\\ \huge \red{\mathfrak{ \text{ A}nswer.}}\end{gathered}

Which is the required

Answer.

Similar questions