Math, asked by MiniDoraemon, 2 months ago

Previous year IIT jee Question
Chapter :- complex number and quadratic equation.​

Attachments:

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\:z_1 \: and \: z_2 \: are \: roots \: of \:  {z}^{2} + az + b = 0

We know that,

\boxed{\red{\sf Product\ of\ the\ zeroes=\frac{Constant}{coefficient\ of\ x^{2}}}}

\bf\implies \: z_1z_2 =  \dfrac{b}{1} = b

and

\boxed{\red{\sf Sum\ of\ the\ zeroes=\frac{-coefficient\ of\ x}{coefficient\ of\ x^{2}}}}

\bf\implies \: z_1 + z_2 = -   \dfrac{a}{1} =  -  \: a

Now,

Further it is given that,

\rm :\longmapsto\:(0,0), \:z_1  \: ,z_2 \: forms \: vertices \: of \: equilateral \: triangle.

We know that,

 \red{\rm :\longmapsto \:z_1, z_2,z_3 \: forms \: vertices \: of \: equilateral \: triangle \: then}

 \red{\rm :\longmapsto\: {z_1}^{2} +  {z_2}^{2} +  {z_3}^{2} = z_1z_2 + z_2z_3 + z_3z_1  }

Now, we have

\rm :\longmapsto\:z_1 = z_1

\rm :\longmapsto\:z_2 = z_2

\rm :\longmapsto\:z_3 = 0

So, on substituting these values, we get

 {\rm :\longmapsto\: {z_1}^{2} +  {z_2}^{2} +  {0}^{2} = z_1z_2 + z_2 \times 0+ 0 \times z_1  }

 {\rm :\longmapsto\: {z_1}^{2} +  {z_2}^{2}  = z_1z_2 }

 {\rm :\longmapsto\: {z_1}^{2} +  {z_2}^{2} + 2z_1z_2  = z_1z_2  + 2z_1z_2}

\rm :\longmapsto\: {(z_1 + z_2)}^{2} = 3z_1z_2

\rm :\longmapsto\: {( - a)}^{2} = 3b

\bf\implies \: {a}^{2} = 3b

Hence, Option (3) is correct

Additional Information :-

\boxed{ \sf{ \: |z|  =  |\overline{z}| }}

\boxed{ \sf{ \:z \: \overline{z} \:  =  { |z| }^{2}}}

\boxed{ \sf{ \: |z|  = 1 \: \rm\implies\:\overline{z} =  \frac{1}{z}}}

\boxed{ \sf{ \:z = r {e}^{i \theta}  = r(cos\theta + i \: sin\theta)}}

Similar questions