Previous year Question of jee mains
Chapter:- Function
Answers
EXPLANATION.
If R = {(x, y) : x, y ∈ Z, x² + 3y² ≤ 8 } is a relation on the set of integers Z.
As we know that,
Domain of R⁻¹ = Range of R.
⇒ x² + 3y² ≤ 8.
Put the value of y = 0 in the equation, we get.
⇒ x² + 3(0)² ≤ 8.
⇒ x² ≤ 8.
Possible value of x = 0, ± 1, ± 2.
⇒ (0)² ≤ 8. [satisfied].
⇒ (1)² ≤ 8. [satisfied].
⇒ (-1)² ≤ 8. [satisfied].
⇒ (2)² ≤ 8. [satisfied].
⇒ (-2)² ≤ 8. [satisfied].
Put the value of y = ± 1 in the equation, we get.
⇒ x² + 3y² ≤ 8.
⇒ x² + 3(± 1)² ≤ 8.
⇒ x² + 3 ≤ 8.
⇒ x² ≤ 5.
Possible value of x = 0, ± 1, ± 2.
⇒ (0)² ≤ 5. [satisfied].
⇒ (1)² ≤ 5. [satisfied].
⇒ (-1)² ≤ 5. [satisfied].
⇒ (2)² ≤ 5. [satisfied].
⇒ (-2)² ≤ 5. [satisfied].
If we put y = ± 2 in the equation, we get.
⇒ x² + 3y² ≤ 8.
⇒ x² + 3(±2)² ≤ 8.
⇒ x² + 12 ≤ 8.
⇒ x² ≤ 8 - 12.
⇒ x² ≤ - 4.
It is not possible.
∴ Range of R = {-1,0,1}.
Domain of R⁻¹ = {-1,0,1}.
Option [D] is correct answer.
Step-by-step explanation:
R = { (x,y) : x, y € Z , x²+3y² ≤ 8 }
let x = 1 and y = 1 ;
→ 1² + 3(1)²
= 1+3
= 4 ≤ 8
So, (1,1) € R
again,
take x = 2 and y = 1
→ 2²+3(1)²
= 4+3
= 7 ≤ 8
So, (2,1) € R
Similarly, (0,0) , (0,1) , (1,0) , (2,0) , (-1,0), (-2,0) ,(0,-1) , (-1,-1) ,(-2,-1) satisfies the equation x²+3y²≤8.
∵R = {(0,0),(0,1),(1,0),(1,1),(2,0),(2,1)(-1,0),(-2,0),(0,-1),(-1,-1),(-2,-1)}
→ Range if R = {0,1,-1}
we know,