Math, asked by vedanshugatade, 10 months ago

prime factorise and rationalise denominator
 \frac{14}{  \sqrt{108}  -  \sqrt{96}  +  \sqrt{192} -  \sqrt{54}  }

Answers

Answered by knjroopa
2

Step-by-step explanation:

Given 14 / √108 - √96 + √192 - √54

  •                  = 14 / √2^2 x 3^3 - √2^5 x 3 + √2^6 x 3 - √2 x 3^3
  •                 = 14 / √2^2 x 3^2 x 3 - √2^4 x 2 x 3 + √2^6 x 3 - √2 x 3^2 x 3
  •                 = 14 / 2 x 3 √3 – 2 x 2 √6 + 8 √3 - 3√6
  •                 = 14 / 6 √3 - 4√6 + 8√3 - 3√6
  •                 = 14 / 14 √3 - 7√6
  •                 = 14 / 7 (2 √3 - √6)
  •                  = 2 / 2√3 - √6
  • Now rationalizing the denominator we get
  •                     = 2 / 2√3 - √6 x 2√3 + √6 / 2√3 + √6
  •       = 4 √3 + 2√6 / 12 – 6 ( since (a + b)(a – b) = a^2 – b^2 in the denominator)
  •                = 4√3 + 2√6 / 6
  •                = 2 (2√3 + √6) / 6
  •               = 2√3 + √6 / 3 will be the required answer

Reference link will be

https://brainly.in/question/15841574

Answered by Pardeep12392
2

Answer:

Given :

\frac{14}{ \sqrt{108} - \sqrt{96} + \sqrt{192} - \sqrt{54} }

108

96

+

192

54

14

To find :

Rationalise the denominator.

Solution :

Firstly we will prime factorise all the elements of denominator, so

\frac{14}{ \sqrt{108} - \sqrt{96} + \sqrt{192} - \sqrt{54} }

108

96

+

192

54

14

this will become,

\frac{14}{ \sqrt{ {2}^{2} \times {3}^{3} } - \sqrt{ {2}^{5} \times 3} + \sqrt{ {2}^{6} \times 3 } - \sqrt{2 \times {3}^{3} } }

2

2

×3

3

2

5

×3

+

2

6

×3

2×3

3

14

When we take even powers of all the elements outside the square roots,

we will get,

\frac{14}{ 6\sqrt{ 3 } - 4\sqrt{ 6} + 8\sqrt{ 3 } - 3\sqrt{6} }

6

3

−4

6

+8

3

−3

6

14

On further solving the denominator,

we get

\frac{14}{ 14\sqrt{ 3 } - 7\sqrt{ 6} }

14

3

−7

6

14

On dividing numerator and denominator by 7,

we get

\frac{2}{ 2\sqrt{ 3 } - \sqrt{ 6} }

2

3

6

2

then, to rationalise the denominator, we multiply numerator and denominator with :

2 \sqrt{3 } + \sqrt{6}2

3

+

6

so,we will get,

\begin{lgathered}\\ \frac{2}{ 2\sqrt{ 3 } - \sqrt{ 6} } \times \frac{2 \sqrt{3} + \sqrt{6} }{2 \sqrt{3} + \sqrt{6} }\end{lgathered}

2

3

6

2

×

2

3

+

6

2

3

+

6

\begin{lgathered}= \frac{4{\sqrt {3}} + 2{\sqrt {6}}} {12 - 6}\\ = \frac{4{\sqrt {3}} + 2{\sqrt {6}}} {6} \\ = \bf \frac{2 \sqrt{3} + \sqrt{6} }{3}\end{lgathered}

=

12−6

4

3

+2

6

=

6

4

3

+2

6

=

3

2

3

+

6

So,

Rationalisation of given expression is,

\begin{lgathered}\\ \bf \: = \frac{2 \sqrt{3} + \sqrt{6} }{3}\end{lgathered}

=

3

2

3

+

6

Similar questions