Physics, asked by trextaken, 5 months ago

Problem - 11.8: A ball of relative density 0.8 falls into
water from a height of 2m. Find the depth to which the
ball will sink (neglect viscous forces)​

Answers

Answered by shadowsabers03
4

When the ball is dropped from the height, it has only potential energy due to gravity.

So the total initial energy of the ball,

\sf{\longrightarrow U_1=mgh }

Taking \sf{m=\rho V} where \rho is density and \sf{V} is volume of the ball.

\sf{\longrightarrow U_1=\rho Vgh}

At the depth \sf{h',} the ball experiences force of gravity downwards and buoyant force upwards.

So the total final energy of the ball will be,

\sf{\longrightarrow U_2=mgh'-F_bh'}

If \sf{\rho_w} is density of water,

\sf{\longrightarrow U_2=\rho Vgh'-\rho_w Vgh' }

because buoyant force is weight of displaced liquid.

\sf{\longrightarrow U_2=(\rho-\rho_w)Vgh' }

By energy conservation,

\sf{\longrightarrow U_1=U_2}

\sf{\longrightarrow\rho Vgh=(\rho-\rho_w)Vgh' }

\sf{\longrightarrow h'=\dfrac{\rho h}{\rho-\rho_w}}

\sf{\longrightarrow h'=\dfrac{\dfrac{\rho}{\rho_w}\cdot h}{\dfrac{\rho}{\rho_w}-1}}

Taking \sf{\dfrac{\rho}{\rho_w}=s,} the relative density of the body,

\sf{\longrightarrow\underline{\underline{h'=\dfrac{sh}{s-1}}}}

In this question,

  • \sf{s=0.8}
  • \sf{h=2\ m}

Then,

\sf{\longrightarrow h'=\dfrac{sh}{s-1}}

\sf{\longrightarrow h'=\dfrac{0.8\times2}{0.8-1}}

\sf{\longrightarrow\underline{\underline{h'=-8\ m}}}

Negative sign depicts the downward motion of the body through the liquid.

Similar questions