Math, asked by sathinarayanareddy52, 8 months ago

product of two rationalising factors is -1.in those one factor is 2+√5.find the other​

Answers

Answered by snehitha2
6

Answer:

2 - √5

Step-by-step explanation:

Product of two rationalising factors is -1.

In those one factor is 2+√5.find the other

_____________________________________

let the other factor be x

2+\sqrt{5} \times x =-1 \\\\ x=\frac{-1}{2+\sqrt{5} } \\\\ rationalising \ factor=2-\sqrt{5} \\\\

x=\frac{-1}{2+\sqrt{5} } \times \frac{2-\sqrt5}{2-\sqrt{5} } \\\\ x=\frac{-[2-\sqrt{5}]}{(2+\sqrt{5} )(2-\sqrt{5} )} \\\\ x=\frac{-2+\sqrt{5}}{2^2-\sqrt{5}^2} \\\\ x=\frac{-2+\sqrt{5} }{4-5} \\\\x=\frac{-2+\sqrt{5} }{-1} \\\\ x=2-\sqrt{5}

the other factor = 2 - √5

Answered by Anonymous
3

Given:

  • Products of two rationalize factor is =-1
  • One factor = 2+√5

Solution :

Let the factor be s.

 \sf \: 2 +  \sqrt{5}  \times s =  - 1 \\  \\  \sf \: s =  \frac{ - 1}{2 +  \sqrt{5} }   \\  \\ rationalize \:  \: the \:  \: denominator...... \\  \\  \sf \: s =  \frac{ - 1}{2 +  \sqrt{5} }  \times  \frac{2 -  \sqrt{5} }{2 -  \sqrt{5} }  \\  \\  \sf \: s =   \frac{- 2 +  \sqrt{5} }{ {(2)}^{2}  -  {( \sqrt{5} })^{2} }  \\  \\  \sf \: s =  \frac{ - 2 +  \sqrt{5} }{4 - 5}  \\  \\  \sf \: s =  \frac{ - 2 +  \sqrt{5} }{ - 1}  \\  \\  \sf \: s = 2 +  \sqrt{5}

•°• Other factors is 2+5

Similar questions