product : (x-1/x) (x+1/x) (x²+1/x²)
Answers
Answered by
55
Answer :-
Solution :-
(x - 1/x)(x + 1/x)(x² + 1/x²)
= {(x)² - (1/x)²}(x² + 1/x²)
[Because (a + b)(a - b) = a² - b² and above a = x and b = 1/x]
= (x² - 1²/x²)(x² + 1/x²)
= (x² - 1/x²)(x² + 1/x²)
= (x²)² - (1/x²)²
[Because (a + b)(a - b) = a² - b² and above a = x² and b = 1/x²]
Identity used :-
- (a + b)(a - b)
Answered by
1
Answer:
Answer :-
\tt x^4 - \dfrac{1}{x^4}x
4
−
x
4
1
Solution :-
(x - 1/x)(x + 1/x)(x² + 1/x²)
= {(x)² - (1/x)²}(x² + 1/x²)
[Because (a + b)(a - b) = a² - b² and above a = x and b = 1/x]
= (x² - 1²/x²)(x² + 1/x²)
= (x² - 1/x²)(x² + 1/x²)
= (x²)² - (1/x²)²
[Because (a + b)(a - b) = a² - b² and above a = x² and b = 1/x²]
\sf = x^{2*2} - \dfrac{(1)^2}{(x^2)^2}=x
2∗2
−
(x
2
)
2
(1)
2
\sf = x^4 - \dfrac{1}{x^{2*2}}=x
4
−
x
2∗2
1
\bf = x^4 - \dfrac{1}{x^4}=x
4
−
x
4
1
Identity used :-
(a + b)(a - b)
Similar questions