Physics, asked by harsh4535, 9 months ago

profit of Tesla coil​

Answers

Answered by Anonymous
0

Explanation:

The term Tesla coil inherently contains an element of genius within it. This technological wonder prides itself in being named after one of the most prolific and mysterious scientists in history—Nikola Tesla. Nikola Tesla is credited as the pioneer who championed the use of Alternating Current (A.C.) and has a log list of other inventions under his belt that have truly transformed the world. However, there was one idea that Tesla was simply obsessed with—the free delivery and transmission of wireless energy. Sounds crazy, right? Even so, that’s what Tesla set out to do with his Tesla Coil.

Operation of the Tesla Coil

To put this in a nutshell, a Tesla Coil is a radio frequency oscillator that drives a double-tuned resonant transformer to produce high voltages with low currents. Now, to better understand what a radio frequency oscillator is, let’s take one further step back to first understand an electronic oscillator.  An electronic oscillator is primarily an electronic circuit that produces an osmicating electrical signal, which is often a sine wave or a square wave. Oscillators convert direct current from a power supply to an alternating current signal. An electronic oscillator that produces signals in the radio frequency range (100kHz to 100GHz) is called a radio frequency oscillator.

A resonant transformer works on the concept of resonant inductive coupling, where the secondary coil in the transformer is loosely coupled, so it resonates. The special aspect of the resonant transformer is that either one or both the circuits present in the transformer consists of a capacitor connected in parallel to it. This coupling of the transformer circuit and the capacitor turns it into a tuning circuit. A tuning circuit or LC circuit is used either for generating signals at a particular frequency or picking out a signal at a particular frequency from a more complex signal, which is also known as a bandpass filter.

Whether you compare the first patented model or the more modern ones, there is one commonality that you will find in all of them—the spark gap. The functionality of the spark gap is to excite the oscillated electrical signal from the resonant circuit. The unique design of the coil ensures that there are low resistive energy losses at high voltages, which the Tesla Coil produces.

Now that we understand the different components of such a coil, we can delve into the operation of the Tesla Coil in its entirety. First, the resonant transformer steps up the voltage to a very high level, to the point where high voltage begins jumping across the spark gap. The typical voltages are between 5 and 30 kilovolts. The capacitor in the circuit forms a tuned circuit with the primary winding L1 of the apparatus. The spark gap plays the role of the switch in the primary circuit. The Tesla Coil (L1, L2) together with the spark gap, generates a high output of voltage when coupled together.

Hence, Tesla coil is a profit.

Similar questions